
dA 1d
dav1d is an AV1 (video) decoder

Jean-Baptiste Kempf, Videolabs / Videolan
Ronald S. Bultje, Two Orioles / FFmpeg

#VDD2018, sponsored by oogle

dav1d project is sponsored by the AOM Alliance

dav1d: introduction
● AV1 is the new video codec by the Alliance for Open Media (AOM)

○ 20-30% lower bandwidth for the same quality content
○ Intended users are internet video streaming services (Netflix, Youtube, etc.)
○ There is currently only one decoder: libaom - we want to fix that

● Goals of our project:
○ Smaller binary size
○ Smaller memory footprint (vs. libaom)
○ Lower CPU usage
○ Multi-threaded
○ Cross-Platform
○ Maintainable & Easy to understand
○ Well-integrated in downstream tools / applications
○ Libre & actually Open Source

}

dav1d: the fine prints
BSD license

● Unusual for us
● Same as libvorbis, opus

RMS approved
● We want forks

(notably for hardware people)
● We want everyone to ship it

(including OS and browsers)
● Outside of FFmpeg, yet easy to integrate

(Simple API)

VideoLAN project

Technical details

● C99
○ No VLA, No Complex
○ No GNU extension

● ASM
○ No intrinsics
○ ASM files, like in x264 and FFmpeg

● Buildsystem
○ Meson, ninja
○ MSVC, Xcode…

● Tools
○ C or Rust
○ MFC in C++

Footprint (= size) *

* av1/encoder in libaom excluded, SIMD excluded (*.[ch] only), built using -DCONFIG_AV1_ENCODER=0 -DAOM_TARGET_CPU=generic
** when playing http://download.opencontent.netflix.com.s3.amazonaws.com/AV1/Chimera/Chimera-AV1-8bit-1920x1080-6736kbps.ivf

Smaller source code

Smaller binary executable

Smaller runtime memory footprint

dav1d libaom

Source (kLOC) 28.5 262.8

Binary (MB) 0.64 1.73

Memory (MB) ** 42.8 162.9

CPU usage (= speed)

* when playing 1000 frames of http://download.opencontent.netflix.com.s3.amazonaws.com/AV1/Chimera/Chimera-AV1-8bit-1920x1080-6736kbps.ivf

Threads Time (sec) *

Frame x Tile Real User

1 59.982 59.397

2 x 1 36.522 59.48

4 x 1 25.709 60.238

1 x 2 34.143 59.877

1 x 4 31.442 63.326

2 x 2 22.151 65.182

4 x 4 19.989 82.961

1 103.502 103.135

2 68.354 106.412

4 49.472 105.553

1 63.788 63.622

2 39.066 64.998

4 29.776 75.744

dav1d

libaom
(C)

libaom
(SIMD)

Speed compared to other video codecs

* when playing 1000 frames (single-threaded) of Chimera-AV1-8bit-1920x1080 compressed using ffmpeg -c:v lib{x264/x265/vpx-vp9} @ 4mbps

Decoder Time (sec) *

dav1d 59.397

libaom 103.135

libvpx 40.817

ffvp9 29.305

ffhevc 27.203

ffh264 21.339

libaom 63.622

libvpx 12.551

ffvp9 11.463

ffhevc 15.265

ffh264 11.853

S
IM

D
C

C SIMD

High-level overview of decoding process (1)

dav1d_init();
Dav1dContext *c;
dav1d_open(&c, ..);
for (;;) {
 // read data (e.g. from file)
 Dav1dData *in = ..;
 Dav1dPicture pic = { 0 };
 dav1d_decode(c, data, &pic);
 // do something with output pic
 ..
 dav1d_picture_unref(&pic);
}
dav1d_close(c);

for (;;) {
 obu_type = ..;
 switch (obu_type) {
 case OBU_SEQ_HDR:
 parse_seq_hdr(..);
 Break;
 case OBU_FRAME:
 case OBU_FRAME_HDR:
 parse_frame_hdr(..);
 if (obu_type == OBU_FRAME_HDR)
 break;
 case OBU_TILE_GRP:
 parse_tile_hdr(..);
 break;
 }
 if (full frame available)
 submit_frame(..);
}

main()

dav1d_decode() parse_obus()

High-level overview of decoding process (2)

// setup tile data structures
for (int row = 0; row < hdr->tile_rows; row++)
 for (int col = 0; col < hdr->tile_cols; col++)
 tile_data[tile_idx++] = ..

// decode tiles (block parsing & reconstruction)
for (int pass = use_2pass; pass <= 2 * use_2pass;
 pass++)
{
 for (int row = 0; row < hdr->tile_rows; row++) {
 for (int sby = hdr->sb_row[row];
 sby < hdr->sb_row[row + 1]; sby++)
 {
 for (int col = 0; col < hdr->tile_cols;
 col++)
 {
 decode_tile_sbrow(..);
 }
 postfilter_sbrow(..);
 }
 }
}

for (int sbx = hdr->sb_col[col];
 sbx < hdr->sb_col[col + 1]; sbx++)
{
 decode_sb(.., seqhdr->sb128 ? BL_128X128 : BL_64X64);
}

 (main thread) (frame thread) (tile thread)

submit_frame() decode_frame() decode_tile_sbrow()

enum BlockPartition bp = ..
if (bl != BL_8X8 && bp == PARTITION_SPLIT) {
 for (int n = 0; n < 4; n++)
 decode_sb(.., bl + 1);
} else {
 for (int n = 0; n < n_blks[bp]; n++)
 decode_b(.., blk_sz[bl][bp][n]);
}

decode_sb()

High-level overview of decoding process (3)
decode_b(), pass != 2, symbol parsing

typedef struct Av1Block {
 uint8_t bl, bs, bp;
 uint8_t intra, seg_id, skip_mode, skip, uvtx;
 union {
 struct {
 uint8_t y_mode, uv_mode, tx, pal_sz[2];
 int8_t y_angle, uv_angle, cfl_alpha[2];
 }; // intra
 struct {
 int8_t ref[2];
 uint8_t comp_type, wedge_idx, mask_sign;
 uint8_t inter_mode, drl_idx;
 uint8_t interintra_type, interintra_mode;
 uint8_t motion_mode;
 uint8_t max_ytx, filter2d;
 uint16_t tx_split[2];
 mv mv[2];
 }; // inter
 };
} Av1Block;

+ palette, palette indices, transform type, transform coefficients

● Each tile (row/col) in pass 1 is completely
independent and can run in its own thread

● In theory, we could signal completion of
each individual tile_sbrow (as a bitmask)
so that subsequent threads (for ref_mvs or
seg_ids) could wait on that
tile-independently

○ However, ATM, we only signal sbrow
completion linearly

● After pass 1, entropy context signaling
causes subsequent frame threads that
depend on this entropy context to be
woken up so their pass 1 can start

High-level overview of decoding process (4)
decode_b(), pass != 1, reconstruction

● Each tile_col is independent and can run
in its own thread

○ For each inter block, we wait for the
reference frame thread to have completed
reconstruction of that sbrow

● After completion of each sbrow, we signal
the main frame thread to process the next
postfilter_sbrow

○ Postfilter is not yet threaded, but we may
add that later if it has merit

● The main thread then signals progression
of block reconstruction to any subsequent
frame waiting for completion of this sbrow

Next steps

Next steps for dav1d:

● Finish everything

● 12 bits/component

● Film grain

● SIMD

● More platforms

● Unit tests, fuzzing

Features

● 8+10 bits/component

● All bitstream tools

● Fast, small, efficient

● Multi-threaded (tile + frame)

RELEASE
Today

We need you!

We need you to contribute!

● Code
○ SIMD
○ Platforms ports
○ Tools & Bindings

● Use it!
○ In your app

● Contribute/donate!

Questions?

Thanks to the Alliance for Open Media for sponsoring this work!

