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An  Algorithm for Vector  Quantizer  Design 
YOSEPH LINDE, MEMBER. IEEE. ANDRES BUZO, MEMBER, EEE, A m  ROBERT M. GRAY, SENIOR MEMBER. EEE 

’ Abstract-An efficient,and intuitive algorithm is presented  for  the  design 
of vector quantizers based either on a known prohabitistic  model or on a 
long training sequence of data. The  basic  properties of the  algorithm are 
discussed mid demonstrated by examples.  Quite  general  distoriion 
measures  and long blocklengths are allowed, as exemplified by the  design of 
parameter vector quantizers of tendiensional vectors  arising  in  Linear 
Predictive Coded (LE) speech compression  with a complicated  distortion 
measure arisiig in LPC analysis that does not  depend  only on the  error 
vector. 

INTRODUCTION 

A- N  efficient and  intuitive algorithm for  the design of good 
block  or vector quantizers  with ‘quite general distortion 

measures is developed for use on  either  known probabilistic 
source  descriptions or  on a  long  training  sequence of data. The 
algorithm is based on in approach of Lloyd [ I ]  , is not a varia- 
tional  technique,  and involves no differentiation; hence it 
works well even when  the  distribution has  discrete compo- 
nents, as is the case when  a sample distribution  obtained  from 
a  training  sequence is used. As with  the  common variational 
techniques,  the algorithm  produces  a quantizer meeting neces- 
sary but  not sufficient conditions  for  optimality. Usually, 
however, at least  local optimality is assured in both approaches. 

We here  motivate and describe the algorithm and relate it  to 
a number of similar algorithms for special cases that have 
appeared in both  the  quantization  and cluster analysis litera- 
ture.  The basic operation o f  the algorithm is simple and 
intuitive in the general case considered  here   and it is clear that 
variational  techniques are not required to develop nor to apply 
the algorithm. 

Several of the algorithm’s basic properties are developed 
using heuristic  arguments  and demonstrated  by example. In 
a companion  theoretical paper [ 2 ] ,  these properties are given 
precise mathematical  statements  and are proved using -argu- 
ments  from  optiniization  theory and  ergodic theory. Those 
results will occasionally be quoted here to characterize the 
generality of certain properties. 
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In particular, the algorithm’s convergence properties are 
demonstrated herein by several examples. We consider the 
usual test ca s .  for such  algorithms-quantizer, design for 
memoryless Gaussian sources with a mean-squared. error distor- 
tion measure; but we design and evaluate block  quantizers with 
a  rate of one bit per symbol and  with  blocklengths,of 1 through 
6 .  Comparison with recently developed lower bounds to  the 
optimal  distortion of such block quantizers (which provide 
strict improvement over the traditional bounds  of rate-distor- 
tion  theory) indicate that  the resulting quantizers are indeed 
nearly optimal  and  not simply locally optimal. We also con- 
sider a scalar case where local optima arise and show how a 
variation of the algorithm  yields  a global optimum. . 

The algorithm is also used to design a  quantizer for  1Odi- 
mensional vectors- arising in  speech compression systems. A 
complicated distortion measure is used that does not simply 
depend on the  error vector. No probabilistic  model is assumed, 
and  hence  the quantizer  must  be designed based on a  training 
sequence of real speech. Here the convergence properties  for 
both length of  the training  sequence  and the  number of 
iterations of the algorithm are demonstrated  experimentally; 
No  theoretical  optimumjs  known  for this  case, but  our system 
was used to compress the  output of a traditional 6000 bit/s 
Linear Predictive  Coded (LPC) speech  system down  to a rate 
of 1400  bit&  with only a slight loss in quality as judged by 
untrained listeners in informal subjective tests. To  the authors’ 
knowledge,  direct  application of variational  techniques have 
not succeeded  in designing block quantizers  for  such large 
block  lengths and  such complicated distortion measures. 

BLOCK QUANTIZERS 

An N-level k-dimensional  quantizer is a  mapping, q;that 
assigns to each input  vector, x = (xo,  -, X ~ L I ) ,  a reproduc- 
tion  vector, i = q(x), drawn from a  finite reproduction 
alphabet, A = bi; i = 1, -, N}.  The  quantizer 4 is compl$ely 
described by  the  reproduction alphabet  (or codebook) A to- 
gether with  the  partition, S = {Si; i = 1, * - * ,  N ) ,  of the  input 
vector space into  the  sets Si = {x: q(x) =vi) of  input vectors 
mapping into  the ith reproduction vector  (or codeword)., Such 
quantizers are also called block quantizers, vector quantizers, 
and block  source  codes. 

DISTORTION MEASURES 

We assume the  distortion caused by  reproducing an  input 
vector x by a reproduction vector i is giveri by a nonnegative 
distortion measure d(x ,  2). Many such distortion measures 
have been  proposed  in the  literature. The  most common  for 
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reasons of  mathematical convenience is the  squarederror dis- 
tortion. 

k-1 

i= 0 

Other  common  distortion measures  are the l,, or Holder norm, 

and its vth power, the uth-law distortion: 

b-1 

While both  distortion measures (2) and (3) depend  on  the uth 
power of  the  errors in the separate coordinates,  the measure of 
(2) is often more useful since it is a  distance or  metric  and 
hence satisfies the triangle inequality, d(x ,  2) d d(x, y )  + 
d @ ,  .?), for all y .  The triangle inequality allows one to  bound 
the overall distortion easily in  a multi-step system by  the sum 
of the individual distortions incurred  in each  step.  The usual 
vth-law distortion  of (3) does not have this property.  Other 
distortion measures are the I , ,  or Minkowski norm, 

the weighted-squares distortion, 

k--3 

where wi 2 0, i = 0 ,  .-e, k - 1, and  the more general quadratic 
distortion 

d(x, i) = (x - i )B (x  - i ) t  

where B = {Bi,j} is a k X k positive definite  symmetric matrix. 
All of the previously described distortion measures have the 

property  that  they  depend  on  the vectors x and P only through 
the  error vector x - i. Such distortion measures having the 
form d(x, i) = L(x -2) are called difference distortion meas- 
ures. Distortion measures not having this form  but depending 
on x and 2 in  a  more  complicated  fashion have also been pro- 
posed for  data compression systems. Of interest here is a dis- 
tortion measure of Itakura and Saito [3, 41 and Chaffee 
[5, 321 which arises in  speech  compression  systems and  has 
the  form 

d(x , i )  = (x - i)R @)(x - i)f , (7) 

where for each x ,   R ( x )  is a positive definite k X k symmetric 
matrix. This distortion resembles the  quadratic  distortion  of 

(6) ,  but here the weighting matrix depends on  the  input vector 

We are here concerned with  the particular form  and applica- 
tion of this distortion measure rather  than  its origins, which 
are treated in depth in [3-91 and in  a  paper in preparation. For 
motivation, however, we briefly describe the  context in  which 
this distortion measure is used in speech  systems. In the LPC 
approach to speech compression [IO] , each  frame of sampled 
speech is modeled as the  output  of a  finite-order all-pole filter 
driven by either white noise (unvoiced sounds) or a  periodic 
pulse train (voiced sounds). LPC analysis has, as input, a  frame 
of speech and produces  parameters describing the model. 
These parameters are then  quantized and transmitted. One 
collection of such  parameters consists of a voiced/unvoiced 
decision together with  a pitch estimate for voiced sounds, a 
gain term u (related to volume), and the sample response of 
the normalized inverse filter (1, al,  a2,  . * a ,  a K ) ,  that  is,  the 
normalized all-pole model  has transfer function or z-transform 
(Zf=o Q ~ z - ~ } - ~ .  Other parameter  descriptions  such as the 
reflection  coefficients are also possible [ 101 . 

In  traditional LPC systems, the various parameters are 
quantized separately, but  such systems have effectively reached 
their theoretical performance  limits [ 1 I ]  . Hence it is natural 
to consider  block quantization  of these  parameters and com- 
pare the performance with  the traditional scalar quantization 
techniques. Here we consider the case where the  pitch and gain 
are (as usual) quantized  separately,  but  the parameters  describ- 
ing the normalized  model are to be quantized together as a 
vector. Since the lead term is 1, we wish to quantize a  vector 
(al, u2,  .e-, u K )  & x = (xo, - - e ,  x ~ - ~ ) .  A distortion measure, 
d(x ,  i), between x and  a reproduction x ,  can then be viewed 
as a distortion measure between two normalized (unit gain) 
inverse filters or models. A distortion measure for  such  a case 
has been  proposed  by Itakura  and  Saito [3 ,4]  and  by Chaffee 
[5, 321 and it  has  the  form of (7) with R ( x )  the autocorrela- 
tion  matrix (r,.(k - j ) ;  k = 0 ,  1, a s - ,  K - 1 ; j  = 0 ,  1, e - ,  K - 1) 
defined by 

X. 

described by x when the  input has  a flat  unit amplitude 
spectrum. 

Many properties and alternative forms  for this  particular 
distortion measure are developed in [3-91, where it is also 
shown that  standard LPC systems  implicitly minimize this 
distortion, which suggests that  it is also an appropriate distor- 
tion measure for  subsequent  quantization. Here,  however, 
the  important  fact is that  it is not a  difference distortion 
measure; it is one for which the dependence on x and i is 
quite  complicated. 

We also observe that various functions of the previously 
defined distortion measures have been proposed in the  lit- 
erature,  for  example,  distortion measures of the  forms IIx - 
i l l r  and p( Ilx - il l ) ,  where p is a convex function  and  the 
norm is any of the previously defined norms. The  techniques 
to be developed here are applicable to all of these distortion 
measures. 
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PERFORMANCE 

k t  x = (xo, ..*,Xk-l) be a real random  vector described 
by a  cumulative distribution  function F(x) = Pr{Xi Qxi ; i  = 
0, 1, a**, k - 1). A measure of the performance of a  quantizer 
4 applied to  the random vector X is  given by the expected 
distortion 

where E denotes  the  expectation  with respect to  the  under- 
lying distribution F. This performance measure is physically 
meaningful if the quantizer q is to be used to  quantize a 
sequence of vectors X ,  = ( X , K ,  e - ,  XnK+K-l) that are sta- 
tionary and  ergodic, since then  the time-averaged distortion, 

converges with probability  one to  D(4) as n -+ 00 (from the 
ergodic theorem),  that is, D(4) describes the long-run time- 
averaged distortion. 

An alternative  performance measure is the maximum of 
d(x ,  4(x))  over all x in A ,  but we use only the  expected dis- 
tortion (9)  since,  in most problems of interest (to us), it is 
the average distortion  and  not  the peak distortion  that  deter- 
mines subjective quality. In addition,  the  expected  distortion 
is more easily dealt with mathematically. 

OPTIMAL QUANTIZATION 
An N-level quantizer will be said to be optimal (or globally 

optimal) if it minimizes the  expected  distortion,  that is, 4* 
is optimal if for all other  quantizers 4 having N reproduction 
vectors D(q*) < D(q) .  A quantizer is said to be locally opti- 
mum if D(q)  is only a local minimum,  that is, slight changes 
in q cause an increase in distortion.  The goal of block quan- 
tizer design is to  obtain an optimal quantizer if possible and, 
if not,  to  obtain a locally optimal and hopefully  “good” 
quantizer. .Several such  algorithms have been proposed in the 
literature  for  the  computer-aided design of locally optimal 
quantizers. In a few special cases, it has  been possible to 
demonstrate global optimality  either analytically or by  ex- 
hausting alllocal  optima. In 1957,in a classic but  unfortunately 
unpublished Bell Laboratories’ paper, S. Lloyd [ l ]  proposed 
two  methods for quantizer design for  the scalar case (k  = 1) 
with a squarederror  distortion  criterion. His “Method II” was 
a  straightforward  variational approach wherein he  took deriva- 
tives with respect to  the  reproduction  symbols,yi, and  with 
respect to  the  boundary  points defining the Si and  set  these 
derivatives to zero.  This  in general yields  only  a “stationary- 
point”  quantizer (a multidimensional  zero derivative) that 
satisfies necessary but  not sufficient conditions for optimality. 
By second derivative arguments,  however, it is easy to establish 
that such stationary-point  quantizers are at least locally opti- 
mum for  vth-power law distortion measures. In addition, 
Lloyd also demonstrated global optimality  for certain  distri- 
butions  by a technique of exhaustively searching all local 
optima. Essentially the same technique was also proposed and 

used in the parallel problem of cluster analysis by Dalenius 
[12] in 1950, Fisher [13] in 1953, and  Cox [14] in 1957. 
The technique was also independently developed by Max [ 151 
in  1960 and  the resulting quantizer is commonly  known as 
the Ldoyd-Max quantizer.  This approach has proved quite 
useful for designing scalar quantizers, with power-law distor- 
tion criteria and with  known distributions that were suffi- 
ciently well behaved to ensure the existence of the derivatives 
in  question. In addition, for  this  case, Fleischer [ 161 was able 
to demonstrate  analytically that  the resulting quantizers were 
globally optimum  for several interesting  probability  densities. 

In some situations,  however, the direct  variational approach 
has not proved successful. First, if k is not equal to 1 or 2, the 
computational requirements  become too  complex. Simple 
combinations of one-dimensional  differentiation will not  work 
because of the possibly complicated surface shapes of the 
boundaries of the cells of the  partition.  In  fact,  the only suc- 
cessful applications of a direct variational approach  to  multi- 
dimensional quantization are  for  quantizers where the  parti- 
tion cells are required to have a  particular simple form such 
as multidimensional “cubes” or, in two dimensions, “pie 
slices,” each described only by a  radius  and two angles. These 
shapes are amenable to differentiation  techniques, but only 
yield a local optimum within the constrained class. Secondly, 
if, in addition, more  complex distortion measures such as 
those of (4)-(7) are desired, the required computation asso- 
ciated with  the variational equations can become exorbitant. 
Thirdly, if the underlying  probability distribution has  discrete 
components,  then  the required derivatives may not  exist, 
causing further  computational problems.  Lastly, if one lacks 
a precise probabilistic  description of the random  vector X 
and  must base the design instead on an observed long  training 
sequence of data,  then  there is no obvious way to  apply  the 
variational approach. If the underlying unknown process is 
stationary  and ergodic, then hopefully  a  system designed by 
using a  sufficiently  long  training  sequence  should also work 
well on  future  data.  To directly  apply the variational tech- 
nique  in  this case, one  would  first have to  estimate  the  under- 
lying continuous  distribution based on  the observations and 
then take the  appropriate derivatives. Unfortunately, however, 
most statistical  techniques  for  density  estimation require an 
underlying  assumption on the class of allowed densities, e.g., 
exponential families. Thus  these  techniques are inappropriate 
when no such knowledge is available. Furthermore, a good fit 
of a continuous model to a  finite-sample  histogram  may have 
ill-behaved differential behavior and  hence  may not produce 
a good quantizer.  To  our knowledge, no one has successfully 
used such an approach nor  has anyone  demonstrated  that this 
approach will yield the correct quantizer  in the limit of a 
long  training  sequence. 

Lloyd [ l ]  also proposed an alternative  nonvariational ap- 
proach as his “Method I.” Not surprisingly, both approaches 
yield the same quantizer for  the special cases he considered, 
but we shall argue that a natural  and  intuitive  extension of his 
Method I provides an efficient  algorithm  for the design of 
good vector  quantizers that overcomes the problems of the 
variational approach. In fact, variations of Lloyd’s Method I 
have been “discovered” several times in the  literature  for 
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squared-error and  magnitudeerror  distortion criteria for  both 
scalar and multidimensional cases (e.g., [22],  [23],  [24], 
[31]). Lloyd’s basic development, however, remains the sim- 
plest, yet  it  extends easily to  the general case considered here. 

To describe Lloyd’s Method I in the general case, we first 
assume that  the  distribution is known,  but we allow it to be 
either  continuous  or discrete  and  make no assumptions re- 
quiring the existence of derivatives. piven a  quantizer 4 
described by a reproduction  alphabet A = bi; i = 1 ,  -, N}  
and  partitiof S = {Si; i = 1 ,  e-, N } ,  then  the expected dis- 
tortion D ( ( A ,  S}) 4 D ( 4 )  can  be written as 

where E(d(X, vi) 1 X E Si) is the  conditional expected distor- 
tion, given X E Si, or,,equivalently, given 4(X) = yi. 

Suppose that we are given a  particular reproduction  alpha- 
bet A ,  but a partition is not specified. A partition  that is opti- 
mum  for A is easily constructed by  mapping each x into  the 
y i  E A minimizing the  distortion d(x, vi), that is, by choosing 
the minimum distortion  or nearest-neighbor  codeword for 
each  input. A tie-breaking rule such as choosing the  reproduc- 
tion  with  the lowest index is required if more than  one :ode- 
word minimizes the  distortion.  The  partition, say P(A) = 
{Pi; i = 1 ,  e,.., N }  constructed in  this manner is such  that 
x €Pi (or q(x) = y i )  only if d(x ,y i )  < d(x,yj) ,  all j ,  and hence 

which, in turn, implies for  any  partition S that 

Thus  for a  fixed reproduction alphabet A^, the best possible 
partition is P(A). 

Conversely, assume we are given a partition S = {Si; i = 
1 ,  .-, N}  describing a quantizer.  For  the  moment, assume also 
that  the  distortion measure and  distribution are  such that,  for 
each  set S with  nonzero  probability in  k-dimensional Euclidean 
space, there  exists a minimum  distortion vector A!($) for which 

Analogous to  the case of a squarederror  distortion measure 
and  a  uniform  probability distribution, we call the vector 
i(S) the  centroid or center of gravity of the set S. If such 
points  exist,  then clearly for a  fixed partition S = {Si; i = 
1 ,  -, N } ,  no reproduction  alphabet A = bi; i = 1 ,  -, N} can 
yield a smaller average distortion  then  the  reproduction alpha- 
bet j(S) 4 { i (Si);  i = 1, -, N}  containing the  centroids  of  the 

sets  in S since 

It is shown in [2] that  the  centroids of (13) ehs t  for all 
sets S with nonzero  probability  for  quite general distortion 
measures including all of those considered here. In particular, 
if d(x, y) is convex iny ,  then  centroids can be computed using 
standard  convex  programming techniques.as described, e.g., in 
Luenberger [17, 181 or Rockafellar [19]. In  certain cases, 
they can  be found easily using variational techniques. If the 
probabiiity of a set S is zero,  then  the  centroid can  be  defined 
in an arbitrary  manner since then  the  conditional  expectation 
given that S in (1 3) has  no unique definition. 

Equations (12) and (14) suggest a  natural  algorithm for 
designing a good quantizer by taking any given quantizer and 
iteratively improving it: 

Algorithm (Known Distribution) 

(0) Initialization: Given N = number s f  levels, a distortion 
threshold e 2 0, and an initial N-level reproduction  alphabet 
A ,  and a distribution F. Set m = 0 and DV1 = -. 

(1) Given A ,  bi; i = 1 ,  -a, N } ,  find its minimum  distor- 
tion  partition P(A,) = {Si; i = 1 ,.-, N}:  x E Si if d(x ,y i )  Q 
d(x, y j )  for all j .  Compute  the resulting average distortion, 
Dm =D({Am,  P(Am)})  = E  min,EAm d(X?y) .  

(2) If (Dm-1 - D,,,)/D, < e, halt with A, and P(&) 
describing final quantizer. Otherwise continue. 

(3) Find the  optimal  reproduction alphabet d(P(&)) = 
{$(si); i = 1 ,  -, N }  f i r  ~(i,). set Am + e A?(P(A,,,)). 
Replace m by m + 1 and go to (1). 

If, at some point,  the  optimd  partition P(A,) has  a cell 
Si such that Pr(X E Si) = 0, then  the algorithm, as,  stated, 
assigns an arbitrary vector as centroid  and  continues. Clearly, 
alternative rules are possible and may  perform better in prac- 
tice. For  exainple,  one can simply remove the cell si. and  the 
corresponding reproduction symbol from  the quantizer 
without affecting  performance, and  then contiriue with  an 
(N - 1)  level quantizer. Alternatively, one could assign to Si 
its Euclidean center  of gravity or  the zth centroid  from  the 
previous iteration. One could also simply reassign the repro- 
duction vector  corresponding to Si to another cell Sj axid con- 
tinue  the algorithm. The  stated  technique is  given simply for 
convenience, since zero probability cells were not a  problem 
in the examples  considered  here.  They can, however,  occur 
and  in such  situations alternative  techniques  such as those 
described may well work better.  In practice,  a simple alterna- 
tive is that, if the final quantizer produced by  the algorithm 
has  a zero probability  (hence useless) cell, simply rerun  the 
algorithm with a  different  initial guess. 

1 



88 IEEE TRANSACTIONS  ON  COMMUNICATIONS, VOL. COM-28, NO. 1 ,  JANUARY 1980 

From (1 2) and  (14), D ,  < Dm-l and  hence  each iteration 
of the algorithm  must either reduce the  distortion  or leave it 
unchanged. We shall later mention  ‘some minor  additional 
details of the algorithm and discuss. techniques  for choosing 
an initial guess, but  the previously given description contains 
the essential ideas. 

Since Dm is nonincreasing and  nonnegative, it must have a 
limit, say D,,  as m * 00. It is shoTn in [2]  that if a  limiting 
quantizer A, exists in the sense A ,  +A,  as m + in the 
usual Euclidean sense, then D({A, ,  P(A,)}) = Dm and A ,  
has the  property  that A ,  = 3(P(A,)), that is, A ,  is exactly 
the  centroid of its own optimal  partition.  In  the language of 
optimization  theory, {A,, P(A,)} is a fuced point under 
further  iterations  of  the algorithm [ 17, 181 . Hence the limit 
quantizer (if it  exists) is called a  fixed-point  quantizer (in 
contrast  to a stationaiy-point quantizer obtained by  a varia- 
tional  approach). In this light,  the algorithm is simply a 
standard  technique  for finding  a fixed point via the  method 
of successive approximation (see, e.g., Luenberger [ 17, 
p. 2721). If E = 0 and the algorithm halts  for finite m ,  then 
such  a  fixed point has  been attained  [2] . 

It is shown  in  [2] that a necessary condition  for a  quantizer 
to be optimal is that  it be a  fixed-point quantizer.  It is also 
shown  in [2]  that, as in Lloyd’s case, if a fixed-point quantizer 
is such  that  there is no probability on  the  boundary  of  the 
partition cells, that is if Pr(d(X, vi) = d(X ,  y j ) ,  for  some i # 
j )  = 0, then  the  quantizer is locally optimum. This is always 
the case with  continuous  distributions,  but can in  principle 
be  violated for discrete distributions.  It was never found to 
occur in our  experiments, however. As Lloyd suggests, the 
algorithm can easily be modified to test a fixed point  for this 
condition  and if there is nonzero probability of a  vector on a 
boundary,  the strategy would be to reassign the vector to 
another cell of  the  partition  and  continue  the  iteration. 

For  the N = 1 case with a  squared-error distortion  criterion, 
the algorithm is simply Lloyd’s Method I ,  and his arguments 
apply  immediately in the more general case considered herein. 
A similar technique was earlier proposed in 1953  by Fisher 
[ 131 in a  cluster analysis problem using Bayes decisions with 
a squarederror cost. For larger dimensions  and distortion 
measures of  the  form d(x, 2) = Ilx -2 11; , r> 1, the relations 
(12)  and (14) were observed by Zador  [20]  and Gersho [21] 
in their  work  on  the  asymptotic performance of optimal 
quantizers,  and  .hence  the algorithm is certainly implicit in 
their work. They did not, however,  actually  propose or apply 
the technique to design a  quantizer  for fixed N .  In 1965, 
Forgy [31] proposed the algorithm for cluster analysis for the 
multidimensional squarederror  distortion case and  a sample 
distribution (see the discussion in MacQueen [25]). In 1977, 
Chen [22] proposed essentially the same algorithm for  the 
multidimensional case with  the  squarederror  distortion meas- 
ure and used it  to design two-dimensional quantizers  for 
vectors  uniformly distributed in  a circle. 

Since the algorithm has  no differentiability  requirements, it 
is valid for purely  discrete distributions. This  has an important 
application to  the case where one  does not possess a priori a 
probabilistic  description of  the source to be compressed, and 
hence must base his design on an observed long  training se- 

quence of the  data  to be compressed. One approach w.ould 
be to use standard  density  estimation  techniques of statistics 
to  obtain a “smooth”  distribution of F and to  then  apply 
variational techniques. As previously discussed, we do  not 
adopt this approach as it requires additional  assumptions on 
the allowed densities. Instead we consider the following 
approach: Use the training sequence, say { x k ;  k = 0, e - ,  n - 1) 
to  form  the time-average distortion 

and observe that this is exactly the expected distortion 
EGnd(X, 4(X)) with respect to  the sample distribution Gn 
determined by  the training  sequence, i.e., the  distribution  that 
assigns probability m/n to a  vector x that occurs in  the training 
sequence m times. Thus we can design a  quantizer that mini- 
mizes the time-average distortion  for  the training  sequence  by 
running the algorithm on  the sample distribution Gnc1p2).  
This yields the following variation of the algorithm: 

Algorithm  (Unknown  Distribution) 
(0) Initialization: Given N = number of levels, distortion 

threshold E > 0, an initial N-level reproduction  alphabet A o ,  
and  a  training  sequence { x j ;  j = 0, -, n - 1). Set m = 0 and 

(1) Given A ,  bi; i = 1, - e ,  N } ,  find the minimum distor- 
tion  partition P(A,) = {Si; i = 1, e-, N}  of  the training 
sequence: xj  E Si if d(xj,  yi) < d(xj, y l ) ,  for all 1. Compute 
the average distortion 

D-1 = 00. 

( 2 )  If (Dm-1  -D,)/D, < E ,  halt with A ,  final reproduc- 
tion  alphabet. Otherwise continue. 

(3) Find the  optimal  reproduction alphabet i (P(Am))  = 
{?(si); i = 1, .-, N )  for P(A,). Set A,+ & ~ ( P ( A , ) ) .  
Replace m by m + 1  and go to (1). 

Observe above that while designing the  quantizer, only 
partitions of the .training sequence (the  input alphabet) are 
considered.  Once the final codebook A ,  is obtained, however, 
it is used on new data outside the training  sequence with  the 
optimum nearest-neighbor  rule, that is, an  optimum  partition 
of k-dimensional Euclidean space. 

( 1 )  It  was  observed by  a reviewer  that application of the algorithm 
to  the sample distribution provides a  “Monte Carlo”  design of the 
quantizer for  a  vector  with  a  known  distribution, that  is,  the  design is 
based on samples of the random vectors rather  than on an explicit 
distribution. 

(2) During the  period  this paper  was  being  reviewed  for publication, 
two similar techniques were  reported  for  special cases. In 1978, Capria, 
Westin,  and Esposito (231 presented a similar technique for the scalar 
case  using dynamic programming  arguments.  Their  approach  was for 
average squarederror  distortion and for maximum distortion over the 
training sequence. In 1979, Menez, Boeri, and  Esteban (241 proposed 
a similar technique for scalar quantization using squarederror and 
magnitudeerror  distortion measures. 
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If the sequence of  random vectors is stationary  and ergodic, 
then  it follows from  the ergodic theorem  that,  with probabil- 
ity  one, G, goes to  the  true underlying distribution F as n + 

-. Thus if the training  sequence is sufficiently long, hopefully 
a good quantizer  for  the sample distribution G, should also be 
good for  the  true  distribution F,  and  hence  should yield good 
performance for  future  data produced  by the source. All of 
these ideas are made precise in [2] where it is shown that, 
subject to suitable mathematical assumptions, the  quantizer 
produced by  applying the algorithm to G, converges, as 
n + 00, to  the  quantizer produced by applying the algorithm 
to  the  true underlying distribution F. We observe that  no 
analogous  results are known  to  the  authors  for  the density 
estimation/variational approach, and that independence of 
successive blocks is not required for these results, only block 
stationarity  and ergodicity. 

We also point  out  that,  for finite  alphabet distributions 
such as sample distributions,  the algorithm always converges to 
a fixed-point  quantizer in  a  finite number  of  steps [2]. 

A similar technique used in  cluster analysis with  squared- 
error cost functions was developed by MacQueen in 1967 [25] 
and has been called the k-means  approach.  A  more involved 
technique using the k-means approach is the “ISODATA” 
approach of Ball and Hall [26]. The basic idea of finding 
minimum distortion  partitions  and  centroids is the  same,  but 
the training  sequence data is used in  a different manner and 
the resulting quantizers will, in  general, be different. Their 
sequential  technique incorporates  the training  vectors  one at 
a  time and  ends when the last  vector is incorporated. This is 
in contrast to the previous algorithm  which  considers all of 
the training ve,ctors at each iteration.  The k-means method 
can be described as follows: The goal is to produce  a partition 
SO = {So, . - a ,  S N - ~ }  of the training alphabet, A = {xi; i = 
0,  -, n - 1) consisting of all vectors in the !raining sequence. 
The  corresponding reproduction  alphabet A will then be the 
collection of the Euclidean centroids  of  the sets Si, that is, 
the final reproduction  alphabet will be optimal  for  the final 
partition  (but  the final partition  may  not be optimal  for  the 
final reproduction  alphabet,  except as n + -). To  obtain S ,  
we first think  of  the each Si as a bin in  which to place training 
sequence  vectors  until all are placed.  Initially, we start  by 
placing the first N vectors  in  separate  bins, i.e., xi E Si, i = 
0,  a * - ,  N - 1. We then proceed as follows: at each iteration, a 
new training  vector x, is observed. We find the set Si for 
which the  distortion between x, and the  centroid ;(Si) is 
minimized and  then add x, to this  bin. Thus,  at  each  itera- 
tion,  the new vector is added to the bin with  the closest 
centroid,  and hence the  next  time, this bin will have a new 
centroid. This operation is continued  until all sample vectors 
are incorporated. 

Although similar in philosophy,  the k-means  algorithm  has 
some  crucial differences. In particular, it is suited for  the case 
where only the training  sequence is to be classified, that is, 
where  a  long  sequence of vectors is to be grouped  in  a  low 
distortion manner. The sequential  procedure is computation- 
ally efficient for grouping, but a “quantizer” is not  produced 
until  the procedure is stopped.  In  other  words, in  cluster  analy- 
sis, one wishes to  group things and  the groups can change with 

time,  but in quantization,  one wishes to fix the groups (to get 
a time-invariant quantizer), and  then use these  groups (or  the 
quantizer) on  future  data  outside of the training  sequence. 

An additional  problem is that  the  only  theorems which 
guarantee convergence, in the limit of a long training  sequence, 
require the assumption that successive vectors be  independent 
[25], unlike the more general case for  the proposed  algorithm 

Recently Levenson et al. used a  variation of the k-means 
and ISODATA algorithms with a distortion measure proposed 
by Itakura [4] to  determine reference templates  for speaker- 
independent word recognition [27]. They  used, as a distortion 
measure, the logarithm of the  distortion  of (7) (which is a 
gain-optimized Itakura-Saito  distortion [7] -our use of  the 
distortion measure with unit-gain-norrnalizd models results 
in no such  logarithmic  function). In their  technique, however, 
a  minimax rule was used to select the  reproduction vectors 
(or cluster  points) rather than finding the  “optimum”  centroid 
vector.  If  instead, the  distortion measure of (7) is used,  then 
the  centroids are easily found, as will be seen. 

P I .  

CHOICE OF Â, 
There are several ways to choose the initial reproduction 

alphabet do required  by the algorithm. One method  for use 
on sample distributions is that  of  the k-means method, namely 
choosing the first N vectors  in the training  sequence. We did 
not  try this approach as, intuitively, one would like these 
vectors to be well-separated,  and N consecutive samples may 
not be. Two  other  methods were found  to be useful in our 
examples.  The  first is to use a uniform quantizer over all or 
most of  the source alphabet (if it is bounded). For  example, 
if used on a sample distribution,  one uses a k-dimensional 
uniform  quantizer  on a  k-dimensional Euclidean cube includ- 
ing all or most of the  points in the training  sequence.  This 
technique was used in the Gaussian examples described later. 

The  second  technique is useful when one wishes to design 
quantizers  of successively higher rates until achieving an 
acceptable level of  distortion. Here we consider M-level quan- 
tizers with M = 2R,  R = 0,  1, * . e ,  and continue until we 
achieve an initial guess for an N-level quantizer as follows: 

INITIAL GUESS BY “SPLITTING” 
(0) Initialization: Set M = 1 and  define Ao(l) = i ( A ) ,  

the  centroid  of  the  entire alphabet (the  centroid  of  the  train- 
ing sequence, if a  sample  distribution is use!). 

(1) Given the  reproduction  alphabet Ao(M) containing M 
vectors hi; i = 1 ,  - e ,  M}, “split” each vector yi into  two close 
vectors yi  + e and yi  - e, where e is a  fixed perturbation 
vector. The collection 2 of f y i  + E ,  yi - E ,  i = 1, e-, M} has 
21.1 vectors. Replace M by q. 

(2) Is M = N ?  If so, set A .  = AIM) and  halt. Jo is then  the 
initial reproduction  alphabet for the N-level quantization 
algorithm. If not, run the algorithm for  an M-level quantizer 
on i(jl4) to produce a good reproduction  alphabet Ao(M), and 
then  return  to  step (1). 

Using the splitting  algorithm on a  training  sequence, one 
starts with  a one-level quantizer consisting of the centroid of 
the training  sequence. This vector is then split into  two vectors 
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and  the two-level quantizer  algorithm is run on this pair to 
obtain a good (fixed-point) two-level quantizer. Each of these 
two vectors is then split and  the algorithm is run to produce 
a  good four-level quantizer. At the conclusion,  one has fixed- 
point  quantizers  for 1 , 2 , 4 ,  8,  .-,Nlevels. 

EXAMPLES 

Gaussian Sources 

The algorithm was used initially to design quantizers for 
the classical example of memoryless Gaussian random var- 
iables with  the  squarederror  distortion criterion of (l), based 
on a  training  sequence of  data. The  training and sample data 
were produced  by a  zero-mean, unit-variance memoryless 
sequence of Gaussian random variables. The initial guess was 
a unit quantizer on the k-dimensional cube, {x: I x i  I < 4; i = 
0, --, k - 1). A distortion threshold of 0.1% was used. The 
overall algorithm  can  be  described as follows: 

(0) Initialization: Fix N = number of levels, k = block 
length, n = length of training  sequence, E = .001. Given a 
training  sequence {xj; j = 0, . - a ,  n - 1): Let ,do be anN-level 
uniform  quantizer  reproduction  alphabet  for  the k-dimensional 
cube,{u:IuiI~4,i=0,--,k-l}.Setm=OandD~1=~. 

(1) Given A ,  = Q i ;  i = 1, * e . ,  N} ,  find  the  minimum 
distortion  partition P(A,) = {Si; i = 1, --, N } .  For  example, 
for  each j = 0, * . a ,  n - 1 ,,compute  d(xj, v i )  for i = 1, * - a ,  N .  
If d(xj,yi) < d(xj,yr)  for all 1, thenxj E Si. Compute: 

n-1 
D ,  = D({A, , P(A,)}) = n-1 min d(xj,y>. 

j = O  YEA, 

( 2 )  If (Dm-1 - D,)/D, < E = .001, halt  with final quan- 
tizer  described by a,. Otherwise continue. 

(3) Find the optimal rep5oduction alphabet i(P(km)) = 
{$(Si); i = 1, -, N }  for P(A,). For  the  squarederror  crite- 
rion, ;(Si) is the Euclidean center  of gravity or  centroid given 
by 

1 
x(si) = - C xi, I I  si I t  j:xjESi 

where llSill denotes  the  number  of training  vectors  in the cell 
Si. If llSiII = 0, set ;(Si) = yi ,  the old codeword. Define 
A,+1 =3(P(A,)) ,  replace m by m + 1, and go to (1). 

Table 1 presents  a simple but nontrivial example  intended 
to demonstrate  the basic operation of the algorithm. A two- 
dimensional quantizer  with  four levels is designed, based on a 
short training  sequence of twelve training  vectors. Because of 
the  short training  sequence  in  this  case, the final distortion is 
lower than  one would expect  and  the final quantizer may not 
work well on new data outside of the training  sequence. The 
tradeoffs  between  the  length of the training  sequence and  the 
performance inside and  outside  the training  sequence  are 
developed more  carefully  in the speech example. 

Observe that, in the example of Table 1, the algorithm 
could  actually halt in step (1) of  the m = 1 iteration since, if 
P(&) = P(,&,-l), it follows that A,+1 = 9(P(A,)) = 
$(P(A?m-l)) = A,, and hence A, is the desired fixed point. 

Nore: Characters with  tildes  underneath appear boldface in text. 

In  other words, if the quantizer stays  the same for  two itera- 
tions,  then  the  .two  distortions are equal  and  an ‘‘E = 0” 
threshold is satisfied. 

As a more realistic example, the algorithm was run for  the 
scalar (k = 1) case with N = 2 ,  3, 4, 6 and 8, using a  training 
sequence of 10,000 samples per quantizer  output  from a  zero- 
mean, unit-variance memoryless Gaussian source. The resulting 
quantizer  outputs  and  distortion were within 1% of the 
optimal values reported by Max [15]. No more  than 20 



LINDE et al. : ALGORITHM  FOR  VECTOR  QUANTIZER  DESIGN 91 

3L 0.37 L 
OPTIMAL 

---MINIMAL 

'.lo 2 4 6 8 
- 

ITERATIONS 

Fig. 1. The  Basic  Algorithm:  Gaussian  Source N = 4. 

iterations were required for N = 8 and,  for smaller N ,  the 
number of iterations was considerably smaller. Figure 1 
describes the convergence rate of one of the tests for  the 
case N = 4. 

'The algorithm was then tried for block  quantizers for 
memoryless Gaussian variables with  block  lengths k equal to 
1, 2,3,4,5 and 6 and a rate  of  one bit  per  sample, so that N = 
2k. The distortion criterion was again the squared-error dis- 
tortion measure of (1). The  algorithm used a  training sequence 
of 100,000 samples. In each  case, the algorithm converged in 
fewer than 50 iterations and the resulting distortion is plotted 
in Fig. 2 ,  together with  the one  bit-per-symbol scalar case as 
a function of block length. For  comparison,  the  rate-distortion 
bound [ 2 8 ,  p. 991 D(R)  = 2-2R for R = 1 bit-per-symbol 
is also plotted. As expected  and as shown in Fig. 2 ,  the block 
quantizers outperform  the scalar quantizer,  but for these block 
lengths, the performance is still far from the rate distortion 
bound (which is achievable, in principle, only in the limit as 
k + -). A more favorable comparison is obtained using a 
recent result of Yamada,  Tazaki,  and  Gray [29] which pro- 
vides a lower bound  to  the performance of an optimalN-level 
k-dimensional  quantizer  with  a  difference distortion measure 
when N is large. This bound provides strict improvement over 
the rate-distortion bound  for fixed k  and tends  to  the  rate- 
distortion bound as k + -. In  the  current case, the  bound has 
the  form 

where I' is the gamma function. This bound is theoretically 
inappropriate for small k, yet  it is surprisingly close for  the 
k = 1 result,  which is known  to be  almost  optimal. Fo rk  = 6, 

0.33 z 2 0.31 0 a 

O QUANTIZER LOWER BOUND $d(k)  

BLOCK  LENGTH k 

Fig. 2. Block  Quantization  Rate I bit/symbol  Gaussian  Source. 

N = 26 = 64 is moderately large and the closeness of the 
actual  performance to  the lower bound, compared to optimal 
performance provided by D,ck)(l), suggests that  the algo- 
rithm is indeed providing a  quantizer  with  block  length six and 
rate  one  bit-per-symbol that is nearly optimal  (within 6% of 
the optimal). 

LLOYD'S  EXAMPLE 

Lloyd [ l ]  provides an example where both variational and 
fixed-point  approaches can yield locally optimal  quantizers 
instead of a globally optimum quantizer. We next propose  a 
slight modification of the futed-point algorithm that indeed 
finds  a globally optimum quantizer in Lloyd's example. We 
conjecture that this  technique will work  more generally, but 
we have been  unable to prove this  theoretically. A similar tech- 
nique can be used with the  stationary-point algorithm. 

Instead of using samples from the source that we wish to 
quantize, we use samples corrupted by additive independent 
noise, where the marginal distribution of the noise is such that 
only  one locally optimum quantizer exists for it. As an ex- 
ample, for scalar quantization with the  squarederror distor- 
tion measure, we use Gaussian noise. In this case, any locally 
optimal quantizer is also globally optimum. Other  distribu- 
tions, such as the uniform or a discrete amplitude noise with 
an alphabet size equal to the number of quantizer output 
levels, can also be used. 

When the noise power is much greater than  the source 
power, the  distribution of their sum is essentially the distri- 
bution  of the noise. We assume that, initially, the noise power 
is so large that only one locally optimum quantizer  exists for 
the  sum; hence, regardless of the initial guess, the algorithm 
will converge to this optimum. On the  next  step,  the noise 
power is reduced slightly and the quantizer resulting from the 
previous run is used as the initial guess. Intuitively, since the 
noise has  been reduced by  a small amount,  the global optimum 
for the new sum should be close to  that of the previous sum 
(we  use the same source and noise samples with reduced noise 
power).  Thus we expect  that  the algorithm will converge to 
the global optimum even though new local optimum  points 
might have been introduced. We continue in the same manner 
reducing the noise gradually to  zero. 
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Fig. 3. The  Probability  Density  Function. 

To illustrate  how the algorithm  works, we use a  source 
with a probability  density  function as shown  in Fig. 3. In this 
case, there are two locally optimum two-level quantizers. One 
has  the  output levels + O S  and -0.5 and yields  a mean-squared 
error  of 0.083, the second  (which is the global optimum) has 
output levels -0.71  and  0.13  and yields  a  mean-squared error 
0.048. (This example is essentially the same as one of Lloyd’s 

The modified  algorithm was tested on a  sequence of 2,000 
samples chosen  according to the probability  density  shown in 
Fig. 3. Gaussian noise was added  starting  at  unity variance and 
reducing the variance by  approximately 50% on each succes- 
sive run.  The initial guess was+ 0.5 and-0.5 which is the  non- 
global optimum.  Each run was stopped when the  distortion 
was changed by less than 0.1% from  its previous value. 

The results  are given in Fig. 4 and it is seen that, in  spite 
of the  bad initial guess, the modified  algorithm converges to 
the globally optimum  quantizer. 

P I  J 

SPEECH EXAMPLE 

In  the  next  example, we consider the case of a  speech 
compression  system  consisting of an LPC analysis of  20 ms- 
long  speech  frames  producing  a voiced/unvoiced decision and 
a pitch, a  gain,  and  a  normalized inverse filter as previously 
described, followed. by  quantization where the  pitch  and gain 
are separately quantized as usual, but  the normalized  filter 
coefficients (a l ,  --, aK) = (xo, xl, -, X K - ~ )  are quantized 
as a  vector with K = 10, using the  distortion measure of (7)- 
(8). The  training  sequence  consisted of a  sequence of  nor- 
malized inverse fdter  parameter vectors(3). The LPC analysis 
was digital, and hence the training  sequence used was already 
“finely quantized”  to  10  bits per sample or  100  bits  for each 
vector.  The original gain required 12  bits per  speech  frame and 
the  pitch used 8 bits per speech  frame. The  total rate of  the 
LPC output (which we wish to further. compress by block 
quantization) is 6000 bits/s. No further compression of gain 
or pitch was attempted in these experiments as our goal was 

(3) The training sequence  and  additional  test data of LPC reflection 
coefficients were provided  by Signal Technology  Inc. of Santa Barbara 
and  were produced using  standard LPC techniques on a single male 
speaker. 

--- STATIONARY POINTS 
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Fig. 4. The  Modified  Algorithm. 

to  study  only  potential improvement  when  block  quantizing 
the normalized fi ter parameters.  The more  complete problem 
including gain and  pitch involves many  other issues and is 
the subject of a  paper still in  preparation. 

For  the  distortion measure of (7)-(8), the  centroid of a 
subset S of a  training  sequence {xj ,  j = 0 ,  1, * e * ,  n - 1) is the 
vector u minimizing 

(Xj - U)R(Xj) (Xj  - U ) f .  

; : x j a  

We observe that  the  autocorrelation  matrix R(x)  is a natural 
byproduct of the LPC analysis and need not be recomputed. 
This  minimization,  however, is a minimumenergy-residual 
minimization problem in LPC analysis and it can be solved by 
standard LPC algorithms such as  Levinson’s algorithm [ lo] .  
Alternatively, it is a much  studied minimization  problem  in 
Toeplitz matrix  theory  [30] and the  centroid can be shown 
via variational  techniques to  be 

The splitting  technique for  the initial guess and  a distortion 
threshold of 0.5% were used. The  complete algorithm for  this 
example  can thus  be described as follows: 

(0) Initialization: Fix N = 2 R ,  R an integer, where N is the 
largest number of levels desired. Fix K = 10, n = length of 
training  sequence, E = .005. Set M = 1. 

Given a  training  sequence {xi;  j = 0, -*, n - l},  set A = 
{xj ;  j = 0, e- ,  n - l}, the training  sequence alphabet. Define 
A(1) = ;(A), the centroid of the  entire training  sequence 
using (1 5) or Levinson’s algorithm. 
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(1) (Splitting): Given A(w = bi, i = 1, *.. , M}, split each 
reproduction vector y i  into yi  + E and y i  - e, where e is a 
fixed perturbation vector. Set Ao(2M) = bi + E ,  y i  - E ,  

i = 1, . - ,M}  and then replace M by 2 M .  
(2) Set m = 0 and Del = 00. 
(3) Given A,(M) = bl, * . e ,  y"), find  its  optimum parti- 

tion P(A,(M)) = {S i ;  i = 1, e.., M}, that is, xi E Si if d(xj, 
vi) G &xi, ut), all 1. Compute  the resulting distortion 

D ,  = D<Cjrn (M), P d m  (M))}) 

(4) If (Dm-1 - D,)/D, < E = .005, then go to step (6). 
Otherwise continue. 

(5) Find  the  optimal  reproduction alphabet A,+l(M) = 
9(P(A,(M)) = {2(Si);  i = 1, -, 1)  for P(A,(M)). Replace 
m by m + 1 and go to (3). 

(6)  Set A(M) = A,(M). The final M-level quantizer is 
described by A(w. If M = N ,  halt  with final quantizer  de- 
scribed by A(N). Otherwise go to  step ( I ) .  

Table 2 describes the results of the algorithm for N = 64, 
and hence for  one- to eight-bit quantizers trained on n = 
19,000 frames of LPC speech produced  by a single speaker. 
The distortion  at  the  end  of each iteration is  given and, in all 
cases, the algorithm converged in fewer than  14 iterations. 
When the resulting quantizers were applied to  data  from  the 
same speaker outside of the training  sequence, the resulting 
distortion was within 1% of that within the training  sequence. 
A total of three and  one-half hours of computer  time  on a 
PDP 11/35 was required to obtain all of these codebooks. 

Figure 5 depicts  the rate of convergence of  the algorithm 
with  a  training  sequence  length for a 16-level quantizer.  Note 
the marked  difference  between the  distortion  for  2400 frames 
inside the training se.quence and  outside  the training  sequence 
for  short training sequences. For a  long  training  sequence of 
over 12,000 frames,  however, the  distortion is nearly the same. 

Tapes of  the synthesized speech at 8 bits per  frame for  the 
normalized  model  sounded similar to those of the original 
LPC speech  with 100  bits per  frame for  the normalized  model 
(the gain and the  pitch were both  left  at  the original LPC rate 
of 12  and 8 bits  per frame, respectively). While extensive 
subjective tests were not  attempted, all informal  listening  tests 
judged the synthesized speech perfectly intelligible (when 
heard before the original LPC!) and the  quality  only slightly 
inferior when the  two were compared. The overall compres- 
sion was from 6000 bits/s to  1400 bits/s.  This is not startling 
as existing scalar quantizers  that optimally  allocate bits  among 
the parameters  and  optimally quantize  each parameter using a 
spectral  deviation distortion measures [ 111 also perform well 
in  this range. It is,  however, promising as these were pre- 
liminary  results  with no  attempt  to  further compress pitch 
and gain (which, taken  together in our  system,  had more than 
twice the  bit  rate  of  the normalized  model  vector  quantizer). 
Further results on applications of the algorithm to the overall 
speech compression  system will be the subject of a forthcom- 
ing paper [33]. 

TABLE 2 
ITAKURA-SAITO  DISTORTION VS. NUMBER OF ITERATIONS. 

TRAINING SEQUENCE  LENGTH = 19,000 FRAMES. 
NUMBER  ITERATION 

OF LEVELS DISTORTION  NUMBER 

2  10.33476 1 
1.98925  2 
1.78301  3 
1.67244  4 
1.55983  5 
1.49814  6 
1.48493  7 
1.48249  8 

4  1.38765 1 
1.07906  2 
1.04223  3 
1.03252  4 
1.02709  5 

8  0.96210 1 
0.85183 2 
0.81353  3 
0.79191  4 
0.77472  5 
0.76188  6 
0.75130  7 
0.74383  8 
0.73341  9 
0.71999  10 
0.71346 11 
0.70908  12 
0.70578  13 
0.70347  14 

16  0.64653 1 
0.55665 2 
0.51810  3 
0.50146 4 
0.49235  5 
0.48761  6 
0.48507  7 

32  0.44277 1 
0.40452  2 
0.39388  3 
0.38667  4 
0.38128  5 
0.37778  6 
0.37574  7 
0.37448  8 

64  0.34579 1 
0.3178  6 2 
0.30850  3 
0.30366  4 
0.30086  5 
0.29891  6 
0.29746  7 

128  0.27587 1 
0.2562  8  2 
0.24928  3 
0.24550  4 
0.24309  5 
0.24142  6 
0.2402 1 7 
0.23933  8 

2  56  0.22458 1 
0.20830  2 
0.20226  3 
0.19849  4 
0.19623  5 
0.19479  6 
0.19386 7 
0.19319 8 
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Fig. 5 .  Convergence  with  Training  Sequence. 

EPILOGUE 
The Gaussian example of Figure 2, Lloyd’s example,  and 

the speech example were run on a PDP 11/34 minicomputer  at 
the  Stanford University Information Systems Laboratory.  The 
simple example of Table 1 was run  in BASIC on a  Cromemco 
System 3 microcomputer. As a check,  the  microcomputer 
program was also used to design quantizers for the Gaussian 
case of Figure 2 using the splitting method, k = 1, 2, and 3 ,  
and  a  training  sequence of 10,000 vectors.  The  results agreed 
with the PDP 11/34 run to within one percent. 
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