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Predictive Coding-Part I 
PETER ELIASt 

Summary-Predictive coding is a procedure for transmitting 
messages which are sequences of magnitudes. In this coding method, 
the transmitter and the receiver store past message terms, and from 
them estimate the value of the next message term. The transmitter 
transmits, not the message term, but the diierence between it and 
its predicted value. At the receiver this error term is added to the 
receiver prediction to reproduce the message term. This procedure 
is de&red and messages, prediction, entropy, and ideal coding are 
discussed to provide a basis for Part II, which will give the mathe- 
matical criterion for the best predictor for use in the predictive coding 
of particular messages, will give examples of such messages, and 
will show that the error term which is transmitted in predictive 
coding may always be coded efficiently. 

INTRODUCTION 

WO MAJOR contributions have been made within 
the past few years to the mathematical theory of 
communication. One of these is Wiener’s work 

on the prediction and filtering of random, stationary time 
series, and the other is Shannon’s work, defining the 
information content of a message which is such a time 
series, and relating this quantity to the bandwidth and 
time required for the transmission of the message.’ This 
paper makes use of the point of view suggested by Wiener’s 
work on prediction to attack a problem in Shannon’s 
field: prediction is used to make possible the efficient 
coding of a class of messages of considerable physical 
interest. 

Consider a message which is a time series, a function mi 
which is defined for all integer i, positive or negative. 
Such a series might be derived from the sampling used in 
a pulse-code modulation system.’ From a knowledge of 
the statistics of the set of messages to be transmitted, we 
may find a predictor which operates on all the past values 
of the function, mi with j less than i, and produces a 
prediction p, of the value which m will next assume. 
Now consider the error ei , which is defined as the differ- 
ence between the message and its predicted value: 

ei = rn; - pi . (1) 

All of the information generated by the source in 
selecting the term mi is given just as well by ei ; the error 
term may be transmitted, and will enable the receiver to 
reconstruct the original message, for the portion of the 
message that is not transmitted, pi , may be considered 

t Elec. Engrg. Dept. and Res. Lab. Elec., Mass. Inst. Tech., 
Cambridge, Mass. 

1 For historical remarks on the origin of modern information theory 
see C. E. Shannon and W. Weaver, “The Mathematical Theory of 
Communication,” Univ. of Illinois Press, Urbana, Ill., p. 52 (foot- 
note) and p. 95 (footnote); 1949. 

* B. M. Oliver, J. R. Pierce, and C. E. Shannon, “The philosophy 
of PCM,” PROC. I.R.E., vol. 36, pp. 1324-1331; November, 1948; 
also, W. R. Bennett, “Spectra of quantized signals,” Bell Sys. Tech. 
Jour., vol. 27, pp. 446-472; July, 1948. 
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as information about the past of the message and not 
about its present; indeed, since pi is a quite determinate 
mathematical function, it contains no information at all 
by Shannon’s definition of this quantity.3 

The communications procedure which will be discussed 
is illustrated in Fig. 1. There is a message-generating 
source that feeds into a memory at the transmitter. The 
transmitter has a predictor, which operates on the past of 
the message as stored in the memory to produce an 
estimate of its future. The subtractor subtracts the 
prediction from the message term and produces an error 
term ei , which is applied as an input to the coder. The 
coder codes the error term, and this coded term is sent to 
the receiver. In the receiver the transmitting process is 
reversed. The receiver also has a memory and an identical 
predictor, and has predicted the same value pi for the 
message as did the predictor at the transmitter. When 
the coded correction term is received, it is decoded to 
reproduce the error term ei . This is added to the predicted 
value pi and the message term mi is reproduced. The 
message term is then presented to the observer at the 
receiver, and is also stored in the receiver memory to 
permit the prediction of the following values of the 
message. 

Fig. l-Predicting coding and decoding procedure. 

This procedure is essentially a coding scheme, and will 
be called predictive coding. The memory, predictor, sub- 
tractor, and coder at the transmitter, and the memory, 
predictor, adder, and decoder at the receiver may be 
considered as complex coding and decoding devices. 
Predictive coding may then be compared with the ideal 
coding methods given by Shannon and Fano.4 In general, 

3 Shannon and Weaver, op. cit., p. 31. 
4 Shannon and Weaver, op. at., p. 30; also R. M. Fano, Tech. 

Rep. No. 65, Res. Lab. Elect., M.I.T., Cambridge, Mass.; 1949. 
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predictive coding cannot take less channel space for the 
transmission of a message at a given rate than does an 
ideal coding scheme, and it will often take more. However, 
there is a large class of message-generating processes 
which are at present coded in a highly inefficient way, 
and for which the use of large codebook memories, such 
as are required for the ideal coding methods, is impractical. 
Time series which are obtained by sampling a smoothly 
varying function of time are examples in this class. For 
many such processes predictive coding can give an 
efficient code, using a reasonable amount of apparatus at 
the transmitter and the receiver. 

It should be noted that in the transmission scheme of 
Fig. 1 errors accumulate. That is, any noise which is 
introduced after the transmitter memory, or at the 
receiver, or in transmission, will be perpetuated as an 
error in all future values of the message, as will any 
discrepancy between the operation of the two memories, 
or the two predictors. This means that eventually errors 
will accumulate to such an extent that the message will 
disappear in the noise. If, therefore, continuous messages, 
i.e., time series each member of which is selected from a 
continuum of magnitudes, are to be transmitted, it will be 
necessary periodically to clear the memories of both the 
receiver and the transmitter and start afresh. This is 
undesirable, since after each such clearing there will be 
no remembered values on which to base a prediction, and 
more information transmission will be required for a 
period following each such clearing, until enough re- 
membered values have accumulated to permit good 
prediction once more. 

A more satisfactory alternative is the use of some pulse- 
code transmission system in which only quantized magni- 
tudes of input are accepted. Such a system may be made 
virtually error-free.5 A system of this kind has the further 
advantage that the only very reliable memory units now 
available or in immediate prospect are of a quantized 
nature, most of them being capable only of storing binary 
digits. The use of a quantized system requires that the 
predicted values be selected from the permissible quantized 
set of message values. Strictly interpreted, this severely 
limits the permissible predictors; if by a choice of scale 
the permissible quantized levels are made equal to the 
integers, then the restriction on ~(rn,-~ . . . m,-,) is that 
it take integer values for all sets of integer arguments. 
Actually the ordinary extrapolation formulas have this 
property, and may be used as predictors. But it is not 
necessary to limit the choice of predictors so severely. 
The problem may be evaded by using any function as a 
predictor and computing its value to a predetermined 
number of places by digital computing techniques, the 
prediction then being taken to be the function rounded 
off to the nearest integer. If the predictor as originally 
computed was optimum in some well-defined sense, then 
the rounded predictor will presumably be less good in that 
sense, but in cases where predictive coding may be 
expected to be useful the difference will usually be small. 

5 Oliver, Pierce, and Shannon, Zoc. cit. 

It is necessary to define precisely what is meant by an 
optimum predictor for use in predictive coding-i.e., to 
define some quantity, which depends upon the choice of 
the predictor, and define as optimum a predictor which 
minimizes this quantity. Wiener’s work uses as a criterion 
the minimization of the mean square error term 2. 
Wiener has pointed out that other criteria are possible, 
but that the mathematical work is made simpler by the 
mean square choice.6 Minimizing the mean square error 
corresponds to minimizing the power of the error term, 
and if no further coding is to be done, this is a reasonable 
criterion for predictive coding purposes. However, in the 
system illustrated in Fig. 1, the error term is coded before 
it is transmitted, and its power may be radically altered 
in the coding process. What we are really interested in 
minimizing is the channel space which the system will 
require for the transmission of the error term. This leads 
to the following criterion which will be justified in Part II 
of this paper: That predictor is best which leads to an 
average error-term distribution having minimum entropy. 

The coder of Fig. 1 also requires some consideration. 
Predictive coding eliminates the codebook requirement 
by using prediction. To take advantage of the resultant 
savings in equipment, it is necessary to show that the 
coder itself will not require a large codebook. This reduces 
to the problem of showing that a message whose terms 
are assumed independent of one another may always be 
coded efficiently by a process with a small memory require- 
ment. It will be shown that this is true. It is necessary to 
use two kinds of coding processes: one for cases in which 
the entropy of the distribution from which the successive 
terms are chosen is large compared to unity, and another 
for cases in which the entropy is small compared to unity. 

The following sections of the present paper are devoted 
to a discussion of messages, prediction, entropy, and ideal 
coding. Part II will discuss the predictor criterion given 
above, the classes of messages for which a predictor that 
is optimum by this criterion may be found, and other 
classes of messages for which predictive coding may be of 
use. Mathematically defined examples of message- 
generating processes which belong to these classes will be 
given, and the problem of coding the error term so as to 
take advantage of the minimal entropy of its average 
distribution will be examined. 

CHARACTERIZATION OF MESSAGES 

A necessary preliminary to a discussion of messages is a 
precise definition of what “message” is taken to mean.’ 
Since a communication system is designed to transmit 
many messages, what is actually of interest is the 

6 N. Wiener,, “The Extrapolation, Interpolation and Smoothing 
of Stationary Time Series with Engineering Applications,” published 
in 1942 as an NDRC report, and in 1949 as a book, by the Mass. Inst. 
Tech. Press, Cambridge, Mass., and John Wiley & Sons, Inc., New 
York, N. Y., especially p. 13. 

7 Such definitions are given by Wiener, ibid., and Wiener, 
“Cybernetics,” Mass. Inst. Tech. Press, and John Wiley & Sons, 
Inc., 1948; also by Shannon and Weaver, lot. cit. Our discussion 
starts with a definition like Wiener’s and ends with one like Shan- 
non’s. 
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characterization of the ensemble from which the trans- 
mitted messages are chosen, or the stochastic process by 
which they are generated. As a preliminary definition, 
we may say that a message is a single-valued real function 
of time, chosen from an ensemble of such functions. It 
will be denoted by m(a, t), where a is a real number 
between zero and one which labels the particular message 
chosen from the ensemble, and m(a, t) is defined, for 
each such a, for all values of t from - 00 to m . This 
definition must be restricted in several respects, in part 
to take into account the physical requirements of trans- 
mitting systems and in part for mathematical con- 
venience. 

First, it is assumed that the ensemble from which the 
messages are chosen is ergodic. This means that any one 
message of the ensemble, except for a set whose measure 
in a is zero, is typical of the ensemble in the following 
sense: let &(a) be the probability distribution of the param- 
eter of distribution a. Then with probability one, for 
any function f[m(a, t)] and almost any a, , 

limL 
s T T+rn 2T -T f[dal , 01 dt = I1 f[m(a, 01 dQ(a). 69 

I.e., any function of m has the same average value when 
averaged over time as a function of a single message, as 
when averaged over the ensemble of all possible messages. 
We can thus find out all possible statistical information 
about the ensemble by observing a single message over 
its entire history. The ergodic requirement implies that 
the ensemble is stationary: i.e., that the statistics do not 
change with time. Its practical importance is that it 
permits us to speak indifferently of the message or the 
ensemble, and makes it unnecessary to specify the sense 
in which we speak of an average. In particular, it permits 
the substitution of measurable time averages for ex- 
perimentally awkward ensemble averages. 

Second, it is assumed that the average square of the 
message [in either sense of (2)] is finite. The message will 
be represented in physical systems by a voltage or a 
current, or the displacement of a membrane, or the 
pressure in a gas, or by several such physical variables, as 
it proceeds from its origin to its destination. All of these 
representations require power; in particular, representa- 
tion as a voltage or a current between two points separated 
by a fixed impedance, which is a necessary intermediate 
representation in any presently used electrical communi- 
cation method, requires a power proportional to the 
square of the message. Since only a finite amount of 
power may be supplied to a physical transmitter, it is 
obviously required that the average message power be 
bounded. 

Third, it is assumed that the spectrum of the message 
vanishes for frequencies greater than some fixed frequency 
f. . This will not in general be true for the radio-frequency 
spectrum of the messages as they are generated by a 
source, and it has been shown that a function with an 
infinitely extended spectrum cannot be reduced to a 

function with a spectrum of finite range by any physically 
realizable filter; the transfer characteristic of a filter can 
be zero only for a set of frequencies of total measure 
zero.’ However, this is no practical problem. For since 
the message has a finite total power distributed over the 
spectrum, there will always be an f. so high that a 
negligible fraction of the total power will be located 
beyond it in the power spectrum. 

The reason for this assumption is that, as Shannon has 
pointed out, any function of time that is band-limited 
may be replaced by a time series, which gives the values 
of the function at times separated by an interval l/2j0 .g 
For any band-limited function we have the following 
identity: 

m(t) = 2 m(i/2fo) g~($;~~-i)i) 
{ > 

. (3) i---m 

The values of the function at the sampling points 
t = i/2fo , which are the coefficients of this series, thus 
completely determine the function. If the function is not 
initially band-limited, the expansion will give a function 
which passes through the same values at the sampling 
points, but which is band-limited. As we assume band- 
limited messages, for our purpose the series and the 
function are equivalent, and since the series is easier to 
deal with in the sequel, it is desirable to change the 
definition of the message. Henceforth the message will be 
defined as the series of coefficients in the expansion (3). 
By choice of the unit of time, the sampling interval is 
made unity, and the message is then m;(a), defined for all 
(positive and negative) integer values of the index i. 

A message is thus a time series drawn from an ergodic 
ensemble of such series, and each term in any one message 
is drawn from a probability distribution whose form is 
determined by the preceding terms of that message. 
For the reasons indicated in the first section, we will be 
interested primarily in quantized messages, for which this 
probability distribution will be discrete. However, it will 
at times be more convenient in the analysis and the 
examples to deal with continuous distributions, it being 
understood that quantization will ultimately be used. In 
the discrete case, the message term mi will be selected 
from a discrete probability distribution M, , where 
M,(m,-l *** mi-; *a*) is the conditional distribution 
giving the probability that, for a particular set of past 
values mi-l . . . rnCmi . . * , the message term mi will take 
the integer value Ic. In the continuous case, the message 
term mi will be chosen from a continuous conditional dis- 
tribution M(m, : m,-l . 9. m,+ . . e). Both of these dis- 
tributions are dependent on the set of values of the pre- 
ceding message terms rn;-, * * . mimi . . . , but are of course 
independent of the value of the index i, by the stationary 
nature of the ensemble. 

8 Wiener, “The Extrapolation, Interpolation and Smoothing 
of Stationary Time Series with Engineering Applications,” NDRC 
Report, Mass. Inst. Tech. Press, Cambridge, Mass., p. 37; 1942. 

9 C. E. Shannon, “Communication in the presence of noise,” PROC. 
I.R.E., vol. 37, pp. 10-21; January, 1949. 
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Stochastic processes of this sort are known as Markoff 
processes and have an extensive mathematical literature.” 
An nth order Markoff process is one in which the dis- 
tribution from which each term is chosen depends on the 
set of values of the n preceding terms only; a process in 
which each term is chosen from a single unconditional 
probability distribution may be called a Markoff process 
of order zero. It should be noted that, while any Markoff 
process yielding a message with a finite second moment 
is included in this definition, we will expect most of the 
messages to be Markoff processes of a rather special kind. 
The messages have been derived by the time-sampling of 
a continuously varying physical quantity. The sampling 
rate must be high enough so that the sampling does not 
suppress significant variations in the message-i.e., the 
f. must be above the bulk of the spectral power of the 
message. Now for most such messages, the average rate of 
variation with time is much lower than the highest rate 
that the system must be capable of transmitting. Con- 
sequently, it is to be expected that on the average, suc- 
cessive message values will be near to one another. This 
means, in particular, that in the discrete case the index lc 
is not just an arbitrary labeling of a particular symbol- 
as it is, for example, in Shannon’s finite-order Markoff 
approximations to English”-but may be expected to give 
a genuine metric: message values with indexes near to 
one another may be expected to have probabilities near 
to one another, and the conditional distributions mentioned 
above may be expected to be unimodal. This is not a 
restriction on what kinds of series will be considered to be 
messages, but is rather a specification of the class of 
messages for which predictive coding may be expected to 
be of use, as will be discussed in detail in Part II of this 
paper. 

For a message ensemble for which the conditional dis- 
tributions are not given a priori, it is necessary to de- 
termine them by the observation of a number of messages, 
or of a single message for a long time. It is obviously 
impossible to do this on the assumption that the distri- 
bution from which a particular message term is chosen 
depends on the infinite set of past message values. What 
can, in fact, be measured are the zeroth order approxi- 
mation, in which each term is treated as if it were drawn 
from the same distribution, giving M(m;), an unconditional 
distribution; the first order conditional distribution 
M(mi : m,-,), and so on to the nth order conditional 
distribution for some finite n. A communications system 
which is designed to transmit this approximation will be 
inefficient: the approximating process itself would generate 
messages with a greater information content than the 
messages which are actually being transmitted, and a 
system designed for the approximation will waste time 
or power or bandwidth when transmitting the real message. 
This will be discussed more fully later. 

lo Shannon and Weaver, op. cit., p. 15; also, M. Frechet, cited 
there, and P. Levv, “Processus Stochastique et Mouvement Brown- 
ien,” Gauthier-Viilars, 1948, which give further references. 

I1 Shannon and Weaver, op. cit., pp. 9-15. 

PREDICTION 

Norbert Wiener has developed a very general method 
for finding the linear predictor for a given ensemble of 
messages which minimizes the root mean square error of 
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prediction. His method was developed for the difficult 
case of nonband-limited messages, i.e., continuous 
functions of time which cannot be reduced to time series. 
However, he has also solved the much simpler problem of 
the prediction of time series, such as the messages which 
were defined above. The details of this work are thoroughly 
covered in the literature,l’ and this section will merely 
define some terms, note some results, and discuss the 
prediction problem from a point of view which is weighted 
towards probability considerations and not towards 
Fourier transform considerations. 

From a time series, a linear prediction p, of the value 
of a message term m, is a linear combination of the previous 
message values 

m 
pi = C CL,WL,- j  . 

i=1 

The error e, is defined as 

ei = p, - mi . 

The predictor itself may be considered to be the set of 
coefficients a, . The best linear predictor, in the rms sense, 
is the set of coefficients which, on the average, minimizes 
e’: Wiener has shown that this predictor is determined, not 
by the message ensemble directly, but by the auto- 
correlation function of the ensemble. In general, there will 
be many ensembles with the same autocorrelation function, 
and the same linear predictor will be the best in the rms 
sense for all of them. 

The autocorrelation function for a time series is defined 
by 

ck = lim N-tm * tN mimi-k * 

Devices for rapidly obtaining approximate autocorrelation 
functions have been constructed.13 These devices accept 
the message directly as an input, and graph or tabulate 
the function. By the use of such devices, or by a statistical 
examination of the message, or in some cases by an a 
priori knowledge of the message-generating process, it is 
possible to determine the autocorrelation function. The 
best linear predictor in the rms sense may then be de- 
termined. But it should be noted that there may be non- 
linear predictors which are very much better. 

Indeed, given a complete knowledge of the stochastic 
definition of the message, i.e., a complete knowledge of 

I2 Wiener, op. cit. Also H. W. Bode and C. E. Shannon, “A 
simplified derivation of linear least square smoothing and prediction 
theory,” PROC. IRE, vol. 38, pp. 417-425; April, 1950. 

13T. P. Cheatham, Jr., Tech. Rep. No. 122, Res. Lab. Elect., 
M. I. T. (to be published). See also, Y. W. Lee, T. P. Cheatham, Jr., 
and J. B. Wiesner, “The Application of Correlation Functions in the 
Detection of Small Signals in Noise,” Tech. Rep. No. 141, Res. Lab. 
Elect., M. I. T.; 1949. 



the conditional probability distributions M(m, : m,-l . . . the prediction. If it is desired to limit predictions to the 
m,+ . . .) or M,(m,-l . . m,-, . . .) the best rms predictor, possible quantized values of a discrete probability dis- 
with no restriction as to linearity, is directly available. tribution, it is only necessary to make p** and p”“* unique 
Obviously the best rms predictor for a message term rn; in a way which does this in the cases of ambiguity; where 
defined in this way is the mean of the distribution from the median and mode are uniquely defined, they will 
which it is chosen, which is determined by the past always coincide with one of the possible values of the 
message history: i.e., the best rms predictor, p*, is message. For rms prediction it is necessary to take the 

m quantized value that is nearest to the computed mean 
p* = ei, = C kM,(m,~, ... rnLmi *..) of the distribution as the value of p”. 

kc-cc As an example of a predictable function, consider 
or 

s 

m M(m, : m,-,) = ~ 
m,M(m, : rntel ... rnZdi ...) dm, u&i 

exp [-(m, - ami-J2/2a2]. (4) 
= 

-cc 
The unconditional distribution of mi may be found by 

in the discrete and continuous cases respectively. For the using the reproductive property of the normal distribution. 
mean of a distribution is that point about which its M(m,) will be normal, with a standard deviation g’, and 
second moment is a minimum. Of course, the mean need am,-, will have a normal distribution with standard 
not be a linear function of the past message values. How- deviation ad : then, 
ever, it is some determinate function of these values unless 
the message values are completely uncorrelated-i.e., a2 + a’q” = g”; u (5) 
unless the Markoff process is of order zero. In this case, 

r = &J 

it is just the constant which is the mean of the zero-order and 
distribution. We therefore have as the unconditionally 
best rms predictor the function p*(m,-l . . . m,-i . . +). M(m,) = ~ 

IJf $2; 
exp [ - mt/2P]. (6) 

From this same general statistical viewpoint the best 
predictor on a mean-absolute error basis is the prediction The zero-order approximation to this first-order Markoff 
of the median of the conditional distribution, since the process has, then, a message term distribution of the 
median is that point about which the first absolute same form as the original conditional distribution but a L- 
moment is a minimum. Like the mean, the median’is standard deviation which is larger by a factor I/ 2/l - a’. 
defined by the conditional distribution M as a function By our definition in a previous section the process will 
of the past history of the message. This definition may generate messages only if a < 1: otherwise the standard 
not be unique: if there is a region of zero probability deviation will be infinite, and the message will require 
density between the two halves of a probability distri- infinite power for transmission. A more general example 
bution, any point in the region is a median. However, the in complete analogy to (4) is: 
definition may be made unique by selecting a point within 
this range, for those sets of past message values for which M(m, : rn,-, ... m,-i ...) 

the ambiguity arises. We will denote the best predictor 
in the mean-absolute sense by p**, it being understood =- uk exp [-(m - 2 m,,ai)2/22]. (7) 
that the definition has been made unique in some suitable 
way if the ensemble is such as to require this. Wiener’s prediction procedure is designed for functions 

Finally, it may be desired to predict in such a way that of the form (7), in which each term of the time series is 
in the discrete case, the probability of no error is a maxi- drawn from a normal distribution with constant u, with a 
mum, and in the continuous case the probability density mean which is a linear combination of past values, the 
has the maximum possible value at zero error. This permissible combinations being limited by the requirement 
requires modal prediction. The mode of the conditional that the resultant average distribution have a finite 
distribution will not be unique if there are several equal second moment. The linear combination of past values 
probabilities which are each larger than any other prob- which is the mean of the conditional distribution is also 
ability in the discrete case, or if the continuous distribution the best linear rms predictor, and is indeed the best rms 
attains its maximum value at more than one point. The predictor p*, as noted above. Wiener’s method is then a 
difficulty may again be removed by a suitable choice, and procedure for finding this linear combination in terms of 
P *** will signify the best modal predictor. the autocorrelation function of the message. 

In any of these cases, and indeed for any other prediction The combination of past terms in the exponent may be 
criterion which yields a determinate value of the prediction rewritten as a sum of differences, less a constant times the 
as a function of the past history of the message, the error message value mi . The stochastic function determined by 
term e, is drawn from a distribution E(e, : rniml. . . m,-, . . .) the conditional distribution will then be as approximation 
or E,(m,-t ... m,-i 1 . .) which is of exactly the same to the solution of the difference equation obtained by 
form as the original distribution of the message term, but setting the exponent in (7) equal to zero. In the limit 
which has been shifted along the axis by the amount of u + 0. the stochastic function will become precisely the 
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function which is a solution to this equation, as determined 
by the set of past message values (initial conditions): as g 
grows, the function will wander about in the neighborhood 
of this solution, diverging from it more and more as i 
increases. In (4) above, the equation obtained is just 
mi - amimI = 0, and the solution, mi = am,-, , gives a 
geometric approach to the origin. 

In the case of continuous functions of time, taking 
appropriate limits gives a normal distribution about a 
linear function of the past which may include integral or 
differential operators on the past. The bulk of Wiener’s 
analysis is devoted to this case. Although the method was 
designed with functions like (7) in mind, it is clearly not 
limited to them. In the case of time series it is possible to 
use a distribution which is not normal, with a standard 
deviation (or other parameter or parameters) which is not 
constant, but is also determined by the past values of the 
message. So long as the mean of the distribution is still a 
linear combination of past values, the predictor derived 
from the autocorrelation function will still give the best 
rms predictor. If the mean is a nonlinear function of the 
past values, the predictor obtained from the autocorrela- 
tion function will be the best linear approximation to this 
nonlinear function in the rms sense. 

Where the best predictor is indeed linear, or is well 
approximated by a linear combination of past values, the 
great practical superiority of Wiener’s, method over the 
use of the conditional distribution should be clear. For in 
this method only the autocorrelation function, a function 
of a single variable, needs to be measured; the predictor 
can then be computed no matter what the order of the 
Markoff process may be. Using the conditional probability 
distribution directly, an nth order Markoff process will 
require the observational determination of a function of 
n + 1 variables. This becomes a task of fantastic propor- 
tions when n is as large as four or five: it is practical for 
small n only for a quantized system with very few possible 
quantized levels. 

The direct use of the conditional distribution may, 
however, be quite valuable if the best rms predictor is a 
highly nonlinear function of only a few past values, 
particularly in a quantized system. Nonlinearity is no 
more difficult to treat than is the linear case as far as 
analysis by this method is concerned. For the synthesis 
problem the lack of suitable nonlinear elements for the 
physical construction of nonlinear operators on the past 
is confined to the case of continuous functions of time; in 
the case of time series with quantized terms, digital com- 
puter techniques can provide any desired nonlinear func- 
tion of any number of variables-at, of course, an expense 
in equipment which may become very large for large n. 

When the conditional distribution always has a point of 
symmetry, we may note that the best rms predictor p* is 
equal to the best mean absolute predictor p**. If the 
distribution is also always unimodal, then the best modal 
predictor p”** will also be the same as p*. In particular, 
this will be the case for the examples (4) and (7), but it 
does not, of course, depend on the linearity of the predictor. 

ENTROPY, AVERAGING, AND IDEAL CODING 

The entropy H of a probability distribution M has 
been defined asI4 

m 
H = -c M,logM, 

k=--m 

and 

Hz- m 
s 

M(m,) log M(m,) drn; (8) -m 

in the discrete and continuous cases, respectively. The 
entropy of a probability distribution may be used as a 
measure of the information content of a symbol or message 
value mi chosen from this distribution. The choice of the 
logarithmic base corresponds to the choice of a unit of 
entropy: when logarithms are taken to the base two, as is 
convenient in many discrete cases, the unit of entropy is 
the “bit,” a contraction for binary digit, since in a two- 
symbol system with the two symbols equiprobable, the 
entropy per symbol is one bit for this choice of base. In 
the continuous case computations are often made simpler 
by the use of natural logarithms. The resultant unit of 
entropy is called by Shannon the natural unit. We have 
one natural unit = log,e bits. 

Wiener, Shannon, and Fano14 give a number of reasons 
for the use of this function as a measure of information 
per symbol, and the arguments are plausible and satis- 
fying, but as Shannon remarks, the ultimate justification 
of the definition is in the implications and applications of 
entropy as a measure of information.15 For the analysis of 
communications systems, the definition is completely 
justified by theorems which prove that it is possible to 
code any message with entropy H bits per symbol in a 
binary code which uses an average of H + 6 binary digits 
per message symbo1, where c is a positive quantity which 
may be made as small as desired, and by equivalent 
theorems in the case of the discrete channel with noise 
-i.e., where there is a finite probability that a symbol 

I4 This is the definition given by Shannon (Shannon and Weaver, 
op. cit.) and Fano (R. M. Fano, “The Transmission of Information”, 
Tech. Rep. No. 65, Res. Lab. Elec., M. I. T.; 1949) Wienes (“Cyber- 
netics”, op. cit., p. 76) gives a definition with the opposite sign. There 
is no real conflict here, however, for Wiener is talking about a differ- 
ent measure. Wiener asks, how much information we are given about 
a message term, whose exact value will never be known, when we are 
given the probability distribution from which it is chosen. The an- 
swer is that we know a good deal when the distribution is narrow, and 
very little when the distribution is broad. Correspondingly, entropy 
as Wiener defines it has a large positive value for very narrow dis- 
tributions and a large negative value for ver broad distributions. 
This measure is useful in determining how muc 5 information has been 
transmitted when a message term which is contaminated by noise 
with a known distribution is received; we can use Bayes’ theorem 
and find the probability distribution of the original message, and 
measure information transmitted by measuring the entropy of this 
distribution. Shannon, on the other hand, asks how much informa- 
tion is transmitted by the precise transmission of a message symbol, 
when we know a priori the probability distribution from which it was 
selected. In this case, if the distribution is very narrow, the message 
term tells us very little when it arrives; we knew what it would be 
before we received it. If the distribution is broad, however, then the 
arrival of the term tells us a good deal. This requires the use of the 
opposite sign for entropy. Shannon’s definition will be used through 
this paper; it is the more appropriate one for the kind of problem 
with which we are concerned. 

16 Shannon and Weaver, op. cit., p. 19. 
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transmitted at one quantized level will be received at a 
different level, and in the case of the continuous channel 
with noise-in which the message term is chosen from a 
continuous distribution, and is received mixed with noise, 
so that each received term is the sum of a signal term and a 
noise term, and reception is always approximate. 

For messages as defined in a previous section, we have, 
in general, that the entropy of the distribution from which 
any single message term is chosen is a function of the 
message history: in both the continuous and discrete cases 
we are concerned with conditional distributions, whose 
form depends on the set of values of the terms m,-, . . . 
m,-i . . . which prcede the message term mi whose entropy 
is defined in (8). For such cases-i.e., Markoff processes of 
order one or greater-the entropy is defined in terms of the 
probability, not of each message term, but of a sequence of 
N message terms, the limit being taken as N approaches 
infinity. Following Shannon, l6 we define G, in the discrete 
and the continuous cases as 

slog M(m, , *** rnZWN) dmi ... dmi-N 

= -(l/N) e . . . 2 M(mi,...mi-N) 
m&,=-cc ml-,+.--m 

. log M(mi , . * . m<-N). (9) 

Then the entropy per symbol of the process is defined as 

H = lim GN . (10) N-r=- 

The distribution M(m, , . . . mi-N) in (9) is not a con- 
ditional but a joint distribution: the distribution which 
determines the probability of getting a given set of N 
values for the N + 1 message terms rnimN to mi . Now the 
joint probability distribution of order N + 1 is related to 
the conditional probability distribution and the joint 
distribution of order N by 

M(mi , a** m,-J 

= M(m, : m,-, .. . mi-,)M(mi-, , .. . rn<-J. (11) 

Using the relation (11) in the expression (9), for a 
message generating process which is a Markoff process of 
finite order k, and taking the limit (lo), we have 

m 

H=l-+... _m 
s 

M(m,-, , ... mi-J dm+, *. . drnimk 

4 

m 
M(m, : m,-, . . . miTk) 

-m 

*log M(m, : m,-, 0.. mi-J dmi ’ 
I (12) 

with a similar relation for the discrete case, in which the 
integrals are replaced by sums. In words, what (12) states 

16Shannon and Weaver, op. cit., p. 25. 

is that the entropy for the process as a whole is just the 
average over-all past histories of the entropy of the 
conditional distribution of order k which defines the 
process: the information content per symbol of a message 
generated by such a stochastic process is the average of 
the entropies of the distribution from which the successive 
message terms are chosen. 

It was noted that only a finite order Markoff process 
can, in general, be used as a model of a message source, 
and that, in general, the use of such an approximation is 
inefficient. We may now state this more exactly. If a kth 
order Markoff process is approximated by a process of 
order less than Ic, then the entropy of the approximating 
process will be greater than or equal to the entropy of the 
original process, with the equality holding only if the 
original process is actually of order less than Ic: i.e., only 
if the lath order conditional distribution can be expressed 
in terms of conditional distributions of lower order. The 
result holds also for suitably convergent processes of 
infinite order. It is a direct consequence of the following 
more general theorem. 

Averaging Theorem I 

Let P(z: y) be a probability density distribution of 2, 
for each value of the parameter y: i.e., for all y, 

and 
s 

m P(x: y) dx = 1, 
-m 

P(x: y) >_ 0 

for all x and y. Let Q(y) be a probability density distribu- 
tion of y: 

s 

m 
_m Q(Y) dy = 1 

Q(Y) 2 0. 

Let R(x) be the distribution P(z: y) averaged over the 
parameter y, and let H’ be its entropy: 

R(x) = SE Q(Y>P(x: Y) &/ -m 

H/E-.- m 
s 

R(x) log R(x) dx. (13) -m 

Let H(y) be the entropy of the distribution P(x: y) as a 
function of the parameter y, and let H be its average 
value: 

H(y) = -I- P(x: y) logP(x: y) dx 
-m 

s 

m 
H= _m Q(Y)H(Y) dy. 

Then we always have H’ 2 H, and the equality holds only 
when the y dependence of P(x: y) is fictitious. In words, 
the entropy of the average distribution is always greater 
than the average of the entropy of the distribution. 
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The proof is given in the appendix.17 The theorem 
remains true for discrete distributions, and the statement 
is unchanged except for the uniform substitution of the 
summation indexes i and j for the continuous variables x 
and y and the replacement of integrations by sums. By 
successive application of the proof it is also obvious that 
the result holds for a distribution which is a function of n 
parameters Y1 to Yn . The application to Markoff processes 
is direct, for a conditional distribution of order k - 1 may 
be expressed as an integral of the form R(x) in (13), 
where P(x: y) is the conditional distribution of order Ic and 
y is the term rntmk . 

The theorem is also applicable to cases in which the 
dependence of the distribution on past history is not 
explicit. If the dependence of the distribution M(m, : m,-, 
. . . m,-,) on the set of past message values is through a 
dependence on one or several parameters (e.g., the mean 
and the standard deviation of a distribution are functions 
of the set of past message values but the distribution is 
always normal), the conclusion still holds: the entropy of 
the average distribution, averaged over the distribution 
of the parameters, is always greater than the average over 
the parameters of the entropy. This is illustrated by the 
example of (4). The average message term distribution of 
the process is a normal distribution with a standard 
deviation u/ dr’ - a , with an entropy which may easily 
be computedl’ as 

-- 
H, = log CT 42re + log (1/2/l - a’), 

but each message term has a normal distribution with 
standard deviation, with entropy just 

H = log crd2ae, 

which is thus the average entropy of the process as a whole. 
The difference between these two entropies may be made 
as large as we like by letting a approach one. 

A second averaging theorem which will be useful later 
deals with averages over a single distribution. 

Averaging Theorem II 

Let P(x) be a probability distribution with entropy H: 

s 
- P(x)dx = 1, P(x) 2 0 for all x, 

-m 

H= - 
I 

m P(x) log P(x) dx. 
-cc 

Let Q(x, y) be a weighting function: 

1 
m 

-m Qb, Y) dx = Irn Qb, Y) dy = 1, -m 

Qb, Y) 2 0 for all x and y. 

I7 The content of this theorem is implied by the derivations leading 
UP to Shannon’s fundamental theorem. Shannon and Weaver. on. 
cit., p. 28. However, the theorem can’be stated and proved ‘asLa 
property of entropy as a functional of a probability distribution, 
with no reference to sequences of message terms, and the proof is so 
straightforward and simple that the theorem deserves an independent 
statement. 

I8 Shannon and Weaver, op. cit., p. 56. 

Let R(x) be the averaged distribution with entropy H’: 
m 

R(x) = /- P(Y>&(x, Y) dy 
J-CC 

H’=- m 
s 

R(x) log R(x) dx. 
-m 

Then we always have H’ 2 H, and the equality holds only 
when the weighting function is a Dirac delta function. 

This theorem is given by Shannon.lg It is also true in the 
discrete case: the equality then holds only if the average 
distribution R(x), or R, in the discrete case, is a mere 
permutation of the distribution P(x), or Pi . 

At the beginning of this section it was stated that it is 
possible to code a message with entropy H bits per symbol 
by a coding method which uses H + E binary output 
symbols per input symbol, on an average. Such a coding 
scheme will be called an ideal code. Shannon has given two 
such coding procedures, and Fano has given one which is 
quite similar to one of Shannon’s” We will call coding by 
means of Shannon’s second procedure, or by means of 
Fano’s method, Shannon-Fan0 coding. Both are procedures 
for giving short codes to common messages and long codes 
to rare messages. They are given in the references. We will 
here only note the important result. Coding a group of N 
message terms at once, the average number H, of output 
binary symbols per input message symbol is bounded: 

G, I H, I G, + l/N. (14) 

Here G, is the quantity defined in (9). As N increases’ 
G, approaches H, the true entropy of the process, so H, 
also approaches H. For a discrete process, an eficient code 
may be defined as one for which the ratio H/H, is near 
one. It is clear that there are two reasons why a Shannon- 
Fano code for small N may be inefficient: first, if G, is 
small, the ratio G,/H, may be small, if H, is near its 
upper bound in (14). Second, for small N, G, may be a 
poor approximation to H. 

It should be noted that it is not reasonable to define an 
efficiency measure for continuous distributions as a ratio 
of entropies. For a process which is ultimately to be 
quantized, the entropy of a continuous distribution does 
not approximate the entropy of the discrete distribution 
which is obtained by quantization, unless the scale of the 
variable in the continuous distribution is so chosen as to 
make the interval between quantized levels unity. Using 
a different choice of scale adds a constant to the entropy of 
the distribution, so that the ratio which defines efficiency 
is changed. For this reason, until a quantizing level spacing 
is chosen, it is possible to speak only of the differences 
between the entropies of continuous distributions, and 
not of their ratios. 

I9 Shannon and Weaver, op. cit., p. 21, property 4 for the discrete 
case; p. 55, property 3 for the continuous case. 

xo Shannon and Weaver, op. cit., p. 29; Fano, op. cit. Shannon’s 
procedure is simpler to handle mathematically; Fano’s is perhaps 
somewhat simpler to grasp. Fano’s method is not quite completely 
determinate. In cases in which the two methods do not agree, Fano’s 
provides a more efficient code than Shannon’s. 
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APPENDIX 

Proof of Averaging Theorem I 

Expanding H’ by the definitions given, we have 

H’ = - Irn dx {sm dy Q(y)P(x: y) log jrn dz Q(z)P(x: i)}. 
-m -m -cc 

Adding and subtracting a term gives 

m 
+ j- dy Q(Y)&: Y) log 

s 
dz Q(z)P(x: z) 

-- p(x. y) . -m . 1 

The quotient in the last integral cannot cause trouble, 
since the integrand as a whole approaches zero with 
P(x: y). Interchanging the order of integration in the first 
integral and using the definition of H gives 

.log J-m 
P(x: y) . (14) 

Changing the logarithmic base will multiply both sides 

of (14) by the same constant, so we are free to use natural 
logarithms and measure entropy in natural units. Using 
the inequality logu 5 u - 1 in the integral in (14) gives 

H’ 2. II - .c dx .ca, dy QWYx: z/l 

s m dz Q(z)P(x: z) 
-I+-“--- 

fYx: Y) 

- s_c, dx [; &/ 1; dz QMQW'(x:4. 
Integrating first with respect to Z, we have by the normali- 
zation requirements on P(x: y) and Q(v) that 

H’>H+l-l>H. 

The equality can be realized only when logu = 1, or in 
this case when 

s 
- P(x:z)Q(z) dz = P(x: y). (15) -m 

For this to hold, P(x: y) must have no dependence on vari- 
able y, since y does not appear on the left of (15), Q.E.D. 
In the discrete case, the precise same proof holds when 
summations are uniformly substituted for integrations. 

Predictive Coding-Part II 

Summary-In Part I predictive coding was defined and messages, 
prediction, entropy, and ideal coding were discussed. In the present 
paper the criterion to be used for predictors for the purpose of pre- 
dictive coding is defined: that predictor is optimum in the information 
theory (IT) sense which minimizes the entropy of the average error- 
term distribution. Ordered averages of distributions are defined and 
it is shown that if a predictor gives an ordered average error term 
distribution it will be a best IT predictor. Special classes of messages 
are considered for which a best IT predictor can easily be found, 
and some examples are given. 

The error terms which are transmitted in predictive coding are 
treated as if they were statistically independent. If this is indeed 
the case, or a good approximation, then it is still necessary to show 
that sequences of message terms which are statistically independent 
may always be coded efficiently, without impractically large memory 
requirements, in order to show that predictive coding may be prac- 
tical and efficient in such cases. This is done in the final section of 
this paper. 

DEFINITION OF INFORMATION-THEORY CRITERION 
FOR PREDICTORS 

We have now a sufficient vocabulary and collection of 
results to define and discuss a criterion of prediction that 
is appropriate for the kind of communications scheme 

outlined in the Introduction. An obvious definition is: 
that predictor is best, in the sense of information theory, 
which requires the minimum channel space for the trans- 
mission of its error term. But this specification is not yet 
sufficient. It is necessary to define to some extent the way 
in which the error term is to be coded, in order to define a 
predictor uniquely for a given message-generating process. 

One procedure is to use Shannon-Fan0 coding for the 
transmission of the error term. This means that the 
predictor p(mi-l .. . m,-, .. .) should be chosen to 
minimize t,he ensemble average of the entropy of the error 
distribution. The average of 

- 
s 

m E(m z : m,-, a-. m,-, .-.) 
-m 

-log E(m, : m,-l . . . m,_, . . .) dm, (If9 

or of 
m 

- c E,(m,-l . . . rn;-? . . .) log E,(m,-, . . . m,-, ...) 
-m 

is to be minimized, the averaging being done over the 


