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A Pyramid Vector Quantizer 
THOMAS R. FISCHER, MEMBER, IEEE 

Abstract-The geometric properties of a memoryless Laplacian source 
are presented and used to establish a source coding theorem. Motivated by 
this geometric structure, a pyramid vector quantizer (PVQ) is developed 
for arbitrary vector dimension. The PVQ is based on the cubic lattice 
points that lie on the surface of an L-dimensional pyramid and has simple 
encoding and decoding algorithms. A product code version of the PVQ is 
developed and generalized to apply to a variety of sources. Analytical 
expressions are derived for the PVQ mean square error (mse), and 
simulation results are presented for PVQ encoding of several memoryless 
sources. For large rate and dimension, PVQ encoding of memoryless 
Laplacian, gamma, and Gaussian sources provides mse improvements of 
5.64, 8.48, and 2.39 dB, respectively, over the corresponding optimum 
scalar quantizer. Although suboptimum in a rate-distortion sense, because 
the PVQ can encode large-dimensional vectors, it offers significant reduc- 
tion in mse distortion compared with the optimum Lloyd-Max scalar 
quantizer, and provides an attractive alternative to currently available 
vector quantizers. 

I. INTRODUCTION 

T HE DATA COMPRESSION or vector quantization 
of a continuous-valued source has a rich and varied 

history, dating to the original work of Shannon [l], An 
algorithm for the design of scalar quantizers based on the 
necessary conditions for optimality is well-known [2], [3], 
and the resulting Lloyd-Max quantizer is routinely used in 
data compression applications. Despite the relative sim- 
plicity of the optimum scalar quantizer design, the perfor- 
mance fails to achieve a distortion close to the rate-distor- 
tion bound, particularly for sources with memory. For 
certain memoryless sources, however, including entropy 
coding in the design process has yielded very good per- 
forming scalar quantizers [4]. 

In an attempt to obtain quantization performance closer 
to that promised by rate-distortion theory, there has re- 
cently been considerable interest in vector quantization. In 
this case the average statistical properties of a block or 
vector of data values can be used to advantage. A theoreti- 
cal basis for asymptotically optimum vector quantization 
has been provided by Zador [5] and Gersho [6], [7], and 
asymptotic vector quantizer (VQ) performance bounds 
were developed by Yamada, Tazaki, and Gray [8]. The 
necessary conditions for an optimum scalar quantizer have 

Manuscript received November 1, 1983; revised December 20, 1984. 
This work was supported in part by the Air Force Office of Scientific 
Research, under Grant AFOSR 84-0003. A preliminary version of this 
paper was presented at the 21st Annual Allerton Conference on Com- 
munication, Control, and Computing, October 5-7, 1983. 

The author is with the Telecommunications and Control Systems 
Laboratory, Department of Electrical Engineering, Texas A & M Univer- 
sity, College Station, TX 77843, U.S.A. 

IEEE Log Number 8608405. 

been generalized to the vector case, and Linde, BUZO, and 
Gray (LBG) [9] developed an iterative vector quantizer 
design algorithm based on a training sequence. This LBG 
algorithm has been rigorously studied [lo] and applied to 
the vector quantization of a number of sources (see, e.g., 
[ll]-[16]). Although the LBG approach is quite general, it 
suffers from two basic drawbacks. First, the training se- 
quence approach is essentially a Monte Carlo method and 
requires considerable computer time for the design of each 
vector quantizer. Second and more importantly, the design 
that is produced has no general structure, and the imple- 
mentation of the VQ design requires considerable compu- 
tation. In the worst case the implementation requires a 
distance calculation between the input vector and every 
output vector, so that the best representation vector can be 
determined. Such a brute force search for the nearest 
representation point becomes infeasible for modest rates 
and dimensions. 

The principal alternative to quantizers based on the 
LBG algorithm is the lattice quantizer [7], [17]-[20]. By 
using a regular set of points in space, lattice quantizers 
offer the potential of rapid encoding and decoding algo- 
rithms [18], [19]. Sayood, Gibson, and Rost [20] have used 
a lattice quantizer in transform image coding, but so far 
lattice quantizers have been primarily oriented toward 
memoryless uniform sources. 

The purpose of the present paper is twofold; first, the 
geometric properties of a Laplacian source are developed 
and used to prove a source coding theorem; second, moti- 
vated by the geometric approach, arrinstrumentable vector 
quantizer is developed for arbitrary vector dimension. The 
general approach is strongly influenced by Sakrison’s [21] 
clever development of the geometric properties of a Gauss- 
ian source. As noted by a perceptive reviewer, the source 
coding theorem presented in Section III basically replaces 
the Gaussian source model, mean square error (mse) crite- 
rion, and representation sphere of Sakrison’s treatment, 
with a Laplacian source model, mean absolute error (mae) 
criterion, and representation pyramid. That such an exten- 
sion of Sakrison’s approach is possible, is interesting in its 
own right, and a general geometric formulation for source 
coding is presented elsewhere [22]. Unfortunately, as in 
[21], the proof of the source coding theorem is based on a 
random coding argument, which is not instrumentable [23]. 
Unlike Sakrison’s treatment of the Gaussian source, how- 
ever, the geometric approach is then used to develop an 
implementable vector quantizer, termed a pyramid vector 
quantizer (PVQ). The PVQ uses codewords corresponding 
to points in the cubic (i.e., all integer) lattice, that also lie 
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on a  particular pyramid. As such, the PVQ is a  type of 
lattice quantizer, but interestingly, not one  based on  a  
uniformly distributed source. 

The  paper  is organized as follows. Sections II and  III 
develop the geometric properties of a  memoryless Lapla- 
cian source and prove a  source coding theorem, verifying 
the asymptotic optimality (in a  rate-distortion sense) of the 
geometric approach. In Section IV the PVQ is developed 
and general ized to a  product code [24] version appropriate 
for moderate sizes of vector dimension. Analytical expres- 
sions approximating the large-dimensional mse perfor- 
mance of the PVQ and product code PVQ are then devel- 
oped through use of Shannon’s entropy power [l]. For the 
product code PVQ, the opt imum rate allocation is de- 
termined for the “gain” and “shape” (see [24]) code books. 
In Section V the PVQ is general ized to apply to a  wide 
variety of other sources, with memoryless Gaussian and 
gamma sources treated in detail. Section VI provides the 
results of Monte Carlo simulations of PVQ and product 
code PVQ performance for Laplacian, Gaussian, and  
gamma sources, at a  variety of rates and dimensions. These 
results are compared with the (large-dimensional) perfor- 
mance expressions, the rate-distortion bounds, opt imum 
scalar quantizer performance, the Sayood, G ibson, and  
Rost VQ, and  several LBG algorithm-based results in the 
literature. It is demonstrated that because the PVQ can 
take advantage of large block sizes, for memoryless sources 
the PVQ and product code PVQ offer an  attractive alter- 
native to scalar quantizers and  LBG algorithm-based vec- 
tor quantizers. 

surface area ((L - 1)-dimensional volume), A( L, K). This 
volume and surface area can be  calculated to be  [31, 
p. 6201 

3LYL 
V(L,K) = L 1x IyL + 1) 

A(L, K) = 2L;;;-’ 
where I?(L) = (L - l)!. 

The  scalar random variable r may be  thought of as a  
radial parameter (in the I, sense) that indexes a  particular 
contour of constant density fx(x) or, equivalently, the 
pyramid S(L, Y). The  probability density function for r is 
easily calculated (using the moment  generat ing function) 
as 

hLrL-le-hr 

P,W = 
r(L) . 

Defining 

p=; 

as the per dimension I, norm of X, it is easily verified that 

E[r] = 4  

L  
var[r] = 3  

a1 = ; 
II. THE GEOMETRIC STRUCTURE OF A LAPLACIAN 

SOURCE var[p] = -&. (5) 

Let Xi be  a  sequence of independent and  identically 
distributed (i.i.d.) Laplacian random variables with prob- 
ability density function 

W ith respect to the (per dimension) I, distance measure, it 
is clear that for large L, vector X becomes highly localized 
around the particular contour of constant density indexed 
by r = L/X. That is, the per dimension I, distance be- 
tween X and a  point on  pyramid S(L, L/X) goes to zero 
as L  becomes arbitrarily large. More generally, for any of 
the norms The  sequence X, is assembled into vectors X of length L, 

with a  resulting density 
L v 2  1, (6) 

A contour of constant probability density is specified by 
the condition 

r A 2  IX,1 = llXlll = constant, (2) 
i=l 

the per dimension (norm) distance between X and the 
closest point on  pyramid S(L, L/X) goes to zero as di- 
mension L  gets large. This may be  argued intuitively based 
on  the differential entropy of the source, as follows. 

The  vector X has entropy per degree of f reedom [l], 

where ]]X]]i is the familiar I, norm. Let S(L, K) be  
defined as 

h  = - ;/ ... Jfx(x)logf,(x) dx 

S(L, K) = x: i lXil = K . 
i 

(3) = log ; . 
i=l I i i 

Geometrically, S(L, K) is the surface of a  hyperpyramid Further, it was observed by Shannon [l] that 

in L-dimensional space. The  pyramid S( L, K) encloses an  
L-dimensional volume I’( L, K) and  has an  L-dimensional ; log&(x) 2  -hasL-+oo. (7) 
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Substituting (1) and (2) into (7) yields 
x 
-r+l, 
L 

so that the important pyramid for source coding is (from 
(3)) S(L, L/X). 

For each vector X let 8 be a closest vector on 
S(L, L/X), in the norm sense of (6). Then, asymptotic in 
dimension, negligible distortion is introduced by ap- 
proximating X by X. This is summarized by the following 
theorem. 

Theorem I: For each i.i.d. Laplacian vector X, let X E 
S(L, L/A) be a vector closest to X (in the 11X - X11, 
sense). Then, for arbitrary z > 0, S > 0, and any fixed (Y 
satisfying 0 -C (Y < co, for large enough dimension L, 

;1jx - 211; < c 

for all X except on a set pf total probability 6. Thus, for 
each X a corresponding X E S(L, L/h) exists such that 

$x - 211; 5 0. 
Proof: See Appendix I. 

The norm distance described in the theorem can be 
computed explicitly if v = 1 (and (Y = 1). In this case the 
mae distance is computed (with 8 = LE[lXl]X/llXllJ as 

which, using. Stirling’s approximation for large L, is 
2 

E ;IlX - 2\ll} = ___ 
XjTz 

For v = 2 the distortion measure is mse and the vector 
X can be computed from the well-known projection theo- 
rem. Let vector S(X) have components 

if Xi > 0 
if Xi = 0, if llXlll 2 L/h, (8a) 
if Xi < 0 

or 

if 2 0 ‘i= i 1, Xi 
-1 

’ if Xi < 0’ if 1lXlli -C L/X. (8b) 

The two cases correspond to X being either on or outside 
@a) or inside (8b) the pyramid, respectively. Using the 
projection theorem, the vector on the pyramid S(L, L/h) 
that is closest to X can be computed as 

2=X- [ix&) - gj& C9) 
where (. , .) is the usual inner product and provided 

s(x) = s(2). 00) 
If application of (9) yields a vector X that does not satisfy 

(10) (corresponding to fix being “above” a corner or edge 
of the pyramid), then X 4 S( L, L/h) and all components 
of X that fail (10) should be set to zero and (8) and (9) 
reapplied. This condition (10) can easily be checked using 
a computer algorithm. Setting the indicated components of 
X to zero allows (9) to generate the closest point on the 
pyramid. 

For the norm-based difference distortion measures of 
(6), nothing is lost (for large L) by first representing X by 
an appropriate point on the pyramid and then quantizing 
this point with an optimum vector quantizer. Selection of 
the optimum vector quantizer for points on the pyramid 
will naturally depend on the particular distortion measure. 
The essential concept is that only a single contour of 
constant probability density is important for designing the 
optimum source code. Further (somewhat obviously), since 
the probability density is constant along this important 
geometric surface, quantizer representation regions should 
tend to be distributed uniformly on the surface of the 
pyramid. This intuitive observation is formalized in the 
following section. 

III. A SOURCE CODING THEOREM 

For the norm-based distortion measures of (6), an 
asymptotically (in dimension) optimum source code or 
vector quantizer for a memoryless Laplacian source can be 
designed based solely on the pyramid S( L, L/X). That is, 
from Theorem 1 it follows that an optimum source code 
can be decomposed into the two steps of 1) finding a point 
on S(L, L/A) that is closest to X in the distortion sense, 
and 2) quantizing this point with an optimum vector 
quantizer. Actual construction of the vector quantizer de- 
pends, however, on the geometric structure of the hyper- 
pyramid. 

Based on Sakrison’s development of an optimum source 
code for a memoryless Gaussian source and an mse distor- 
tion criterion [21], a source encoding procedure for an i.i.d. 
Laplacian vector X and the mae distortion measure is as 
follows. 

1) Form 

x = x mlxll11 
II-VII . 

2) Let a rate R 2 0 be selected and choose 2RL points 
at random on S( L, L/X) according to a uniform distribu- 
tion. About each point place a representation region of 
geometric shape S *( L, 6) defined by 

s*(L,c) = {x: llX[ll I E}. 

Adjust the location of each region (i.e., adjust the centroid) 
so that the region both contains the original point and has 
maximum area of intersection with pyramid S(L, L/X). 
Let the centroid of region i be denoted as yi. 

3) If X falls in the ith region, then X is encoded as y,. 
The performance of the source code generated by the 

construction of l)-3) is summarized by the following 
theorem. 
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Theorem 2: Let D(R) = E{(l/L)IIX - yII1} be  the A. Integer Points on  the Pyramid 
mae  distortion resulting from the construction of l)-3). 
Then,  for arbitrary S > 0  and  R 2  0, a  positive integer L, If, pyramid S(L, L/X) has L/A = K where K is a  

exists such that for L  > L, positive integer, then it is possible to calculate the number  
of vectors with integer components that lie on  S(L, K). 

D*(R) I D(R) < (1+ t+)*(R), 

where D*(R) = 2-R/A is the distortion-rate function for 
an  i.i.d. Laplacian source. 

Proof: See Appendix II. 

In the case of the mean-square error performance trite; 
rion, a  construction analogous to l)-3) (using (9) for X 
and selecting the representation regions as spheres instead 
of pyramids) can be  shown to provide asymptotically (in 
L) opt imum performance in the small distortion case. For 
either performance measure, however, the construction is 
based on  a  random assignment of points to S(L, L/X) 
and  leads to designs which are extremely difficult to imple- 
ment. An alternative design approach is to look for points 
on  S(L, L/A) that have useful structural properties. Al- 
though such an  approach does not necessarily lead to 
designs that achieve opt imum (rate-distortion) perfor- 
mance, the implementation can be  quite simple and pro- 
vide performance significantly better than that of the 
opt imum scalar quantizer. This approach is developed in 
the following sections. 

Let N( L, K) be  the number  of such vectors, defined 
explicitly as 

= &xil=K, 
i 

the number  of vectors x such that 

and  xianinteger,fori=l;.,,L ’ 
i=l 1 

tw 

For K = 1, only one  of the xi in (11) is nonzero, with 
value either 1  or - 1. Hence N( L, 1) = 2L. Conversely, if 
L  = 1, then xi in (11) is either K or -K, so that N(1, K) 
= 2. Using a  combinatorial argument,  N(L, K) is shown 
in Appendix III to satisfy the recursive formula 

N(L, K) = N(L - 1, K) 
+N(L-l,K-l)+N(L,K-l), 

for L  2  2  and  K 2  2. Since N(1, K) and  N(L, 1) are 
known, it is simple to compute N(L, K). The  integer 
coordinate points on  S(3,4) are illustrated in F ig. 1. 

IV. A PYRAMIDVECTORQUANTIZER 

A PVQ can be  constructed based on  a  subset of the 
points in the cubic lattice (that is, the set of all vectors with 
integer components).  As such, the PVQ is a  type of lattice 
quantizer but, significantly, a  lattice quantizer that is not 
based on  a  uniform source pdf. 

The  construction of the PVQ will proceed in three 
distinct steps. F irst, the number  of cubic lattice points on  
the pyramid is evaluated. Second, an  encoding/decoding 
algorithm is developed, and  the resulting source code is 
denoted the pyramid vector quantizer. The  PVQ code- 
words are scaled versions of the lattice points that lie on  a  
specified pyramid. Enumerat ion encoding and decoding 
algorithms are provided for representing the pyramid 
codewords as binary codewords for transmission or stor- 
age. Although asymptotic in dimension it is sufficient to 
base an  opt imum VQ design on  a  single (S( L, L/X)) 
pyramid, for moderate sizes of dimension significant dis- 
tortion may be  introduced in approximating X by X. As a  
final mod ification to the PVQ design, concentric pyramids 
are used to generate a  hybrid scalar-vector quantizer in 
product code [24] form. In this design a  fraction of the 
total bit rate is allocated to the scalar quantization of the 
radial random variable r with the remaining bit rate 
allocated to the PVQ for a  normalized pyramid. The  VQ 
construction is carried out for the mse distortion measure 
but may be  readily extended to any of the norm-based 
distortion criteria of (6). 

Fig. 1. Integer coordinate points on S(3,4). 

B. An Encoding Algorithm 

To  encode L-dimensional vectors at a  specified rate per 
dimension R, the largest value of K should be  found such 
that 

N(L, K) I ZRL. (12) 

The N(L, K) points of S(L, K) tend to be  uniformly 
spread over the pyramid surface and make a  natural set of 
representation points for the source code. The  basic encod- 
ing algorithm is as follows. 
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1) Form z E S( L, L/X) from (9). 
2) Scale X by KX/L to obtain a corresponding point, 

2, on S(L, K). 
3) Find the closest of-the N(L, K) integer component 

vectors on S( L, K) to X. This may be done component- 
wise as follows. 

a) Round each component of d to the nearest in- 
teger; call the resulting vector j? 

b) Compute 11 $lh. If 11 Jlli = K, then the closest point 
on S(L, K) has been found. If 1) $lli < K, then increase 
by one in magnitude the K - 11 jjlli components of jj that 
both contribute the largest distortion and were previously 
rounded down. If 11 jjlli > K, then decrease by one in 
magnitude the 11 Jlli - K nonzero components of 9 that 
contribute the most distortion and were previously rounded 
up. In the case of a tie for which component is to be 
modified, choose either one arbitrarily. 

Let the resulting integer component vector be de- 
noted 9. 

4) The vector quantizer representation point is y = 
&j/K, where (Y is a scale parameter selected to minimize 
the distortion. 

Selecting parameter (Y as 

(13) 

provides quantizer output points on pyramid S(L, L/A). 
The VQ representation regions should be adjusted, how- 
ever, to provide the maximum volume of intersection with 
the pyramid surface. For the mse criterion the appropriate 
representation region is the sphere, while for the mae 
criterion the representation region is the pyramid. (The VQ 
encoding truncates these shapes to account for neighboring 
output points.) If one of the scaled N(L, K) points of 
S( L, K) lies in the middle of a face of the pyramid, then 
this point should be used as the representation sphere 
centroid. This follows because the pyramid face acts as an 
(L - l)-dimensional hyperplane slicing through the sphere, 
and the maximum volume of intersection occurs if the 
hyperplane passes through the sphere centroid. For low 
rates, however, K may be much less than L so that all of 
the N(L, K) points lie along edges of the pyramid. The 
representation sphere centroid should then be located 
somewhat inside the pyramid. That is, the scaling factor (Y 
should be chosen as 

L 
Ct=y- 

x 04 

where y I 1 is a parameter that can be adjusted experi- 
mentally. 

The source encoding algorithm is quite easy to imple- 
ment, since it involves only rounding of the vector compo- 
nents and (if lljlli # K) a search over the vector com- 
ponents for the dimensions contributing the largest 
distortion. Implementation of the algorithm requires ad- 
dition, multiplication, comparison, and rounding oper- 

ations. The number of multiplications is a standard mea- 
sure of implementation complexity, and steps l)-4) of the 
algorithm show that no more than 4L multiplications are 
required. In contrast, the LBG algorithm has a design 
complexity that grows exponentially with the rate- 
dimension product (for a training sequence length that is 
proportional to the number of VQ output vectors), and a 
full-search encoding complexity that also depends ex- 
ponentially on the rate-dimension product. 

The performance of the basic pyramid VQ can be im- 
proved in two ways. First, the encoding algorithm of l)-4) 
may be improved (for low rates) by inserting a step 1’) 
prior to 1). 

1’) Use a threshold comparison on the components of X 
so that 

xi9 x;= o 
i 

if 1X,1 > threshold 
(15) 9 if 1X,1 < threshold ’ 

for i = l;.., L. The modified X’ is then used in l)-4). 
Modification 1’) is justified by observing that if 1X,1 is 
small, then it will likely be rounded to zero in step 3) (for 
low rates and hence small K). Setting small Xi to zero in 
step 1’) reduces the size of the normalizing factor 1lXlli 
used in step 2). Since K is substantially smaller than L for 
low rates, many of the components of the possible jj are 
zero. Although the algorithm (step 3)) correctly finds the 
closest integer coordinate point on the pyramid, the VQ 
output is scaled by (Y, and the scaled point may no longer 
be closest to the original. The thresholding reduces this 
effect. 

Using step 1’) requires that a new value of cu be selected 
in step 4). For a high rate VQ, parameter (Y should be 
selected as 

a = E[ll~lll] = L( T + k)epA’, (16) 
where T = threshold used in (15). For low rates, ~1 may be 
selected as 

07) 

again with y I 1. In practice, the threshold parameter may 
be adjusted experimentally for a given R and L. Obvi- 
ously, however, the threshold parameter T should be no 
larger than the value that satisfies 

E[X21)XI I T] = D 

where D is the mse to be obtained by the quantizer. 
The second way in which the PVQ performance can be 

improved is related *to the distortion introduced in ap- 
proximating X by X. Although for large dimension this 
distortion (per dimension) is negligible, for moderate sizes 
of dimension the distortion may be significant. Improved 
PVQ performance may be obtained by using concentric 
pyramids as the basis for the VQ output points. This 
approach is developed in Section IV-E. First, however, we 
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develop a  binary codeword representation for the PVQ 
codewords and an  asymptotic approximation for the mse 
of the PVQ. 

C. Binary Codeword Representation 

For the PVQ to be  useful in a  digital communication or 
storage system, the N( L, K) pyramid codewords corre- 
sponding to the lattice points on  S( L, K) must be  uniquely 
represented as binary sequences of RL bits. Since the 
number  of pyramid codewords can be  counted, there exists 
an  enumerat ion (encoding) procedure that assigns to each 
lattice point a  unique integer in (0; * a, N(L, K) - l}, 
which can be  represented in the usual binary format (as a  
binary codeword) by RL bits. Inverting this procedure 
(enumeration decoding) assigns to each binary codeword 
the corresponding pyramid (lattice point) codeword. Obvi- 
ously, if the rate-dimension product is small, then. the 
enumerat ion encoding/decoding can be  accomplished with 
a  simple table lookup operation. For larger rate-dimension 
products the memory requirements of a  table lookup be- 
come prohibitive, and  efficient enumerat ion encoding and 
decoding algorithms are necessary. 

A general  enumerat ion algorithm may be  based on  
partitioning the pyramid lattice points as follows. If xT = 
(x1,. . '3 XL), then for xi = 0, N(L - 1, K) pyramid 
codewords are possible, corresponding to all permissible 
combinations of (x2; * ., xL). Index these as (0; . a, N( L  
- 1, K) - l}. If xi = 1, there are N(L - 1, K - 1) possi- 
ble pyramid codewords, and  index these as { N(L - 
1, K),. . .y N(L - 1, K) + N(L - 1, K - 1) - l}. If xi 
= - 1, there are also N( L  - 1, K - 1) possible combina- 
tions of (xZ;--, x,), and  so index these codewords as 
{N(L - 1, K) + N(L - 1, K - l);.., N(L - 1, K) + 
2N(L - 1, K - 1) - 1). If xi = 2, there are N(L - 1, 
K - 2) possible codewords, and  these are indexed as 
{N(L - 1, K) + 2N(L - 1, K - l);.., N(L - 1, K) + 
2N(L - 1, K - 1) + N(-L - 1, K - 2) - l}. The  parti- 
tioning continues until xi = K, with index N(L, K) - 2, 
and  xi = -K, with the final index N(L, K) - 1. 

Next, for each value of xi the respective range of indices 
is further partitioned based on  x2. For example, assume 
that xi = 0. Then  for x2 = 0  there are N(L - 2, K) 
pyramid codewords corresponding to all permissible val- 
ues of (x3;.., xL). These codewords are indexed by 
(0, * . *, N(L - 2, K) - l}. If x2 = 1, then the indices are 
{N(L - 2, K);.., N(L - 2, K) + N(L - 2, K - 1) - 
l}, etc. The  partitioning continues through the vector 
component  x L, at which point there is a  one-to-one corre- 
spondence between the pyramid codewords and the in- 
tegers { 0,. * . , N(L, K) - l}. For any specified pyramid 
codeword the corresponding index can be  determined, 
represented as an  RL bit binary sequence, and  transmitted 
or stored. To  decode, the binary sequence is interpreted as 
an  integer and  the pyramid codeword values are extracted 
sequentially, beginning with xi. The  PVQ enumerat ion 
encoding and decoding procedures can be  summarized by 
the following algorithms. 

Encoding Algorithm: 
0) Set index b  = 0, i = 1, k = K, 1  = L. Define N( 1,O) 

= 1  for all I 2  0, N(0, k) = 0  for all k 2  1, and  

sgn(x) = 
i 

0, 
1, -1, 

ifx=O. 
ifx>O ifx<O 

1) 
if xi = 0, then b  = b  + 0, 
if lx,1 = 1, then b  = b  + N(l- 1, k) 

if lxil > 1, then b  = b  + N(l- 1, k) 

k-1 
+ 2  c N(l- 1, k-j) 

j=l 

+[l-s~(xi)] N(l- 1, k - /xi/). 

2) Replace 
k +- k - [xi1 
1+1-l 
iti+l. 

If (k = 0), then stop and transmit b; otherwise, return to 
1). 

Decoding Algorithm: 
0) Assume that the binary codeword is interpreted as an  

integer b  E (0; * a, N( L, K) - l} and  is to be  decoded as 
AT= x (&,* * -7 2,). Set 2  = 0; i = 1; xb = 0; k = K, 
1  = L. Define N(l, 0), N(0, k) as in the encoding al- 
gorithm. 

1) If (b = xb), then ti = 0; go  to 5). 
2) If (b < xb + N(I - 1, k)), then 2i = 0; go  to 4). 

O therwise, xb = xb + N(1 - 1, k); set j = 1. 
3) If (b < xb + 2N(l- 1, k -j)), then 

Z i = JY 
(’ 

ifxbrb<xb+N(l-l,k-j) 
-j, ifb>xb+N(l--l,k-j) ’ 

O therwise, xb = xb + 2N(l- 1, k -j); j = j + 1; go  to 
3). 

4) k = k - [ail; 1= 1  - 1; i = i + 1. If (k > 0), go  to 
1). 

5) If (k > 0), then ZL  = k - (g2,(. Vector f is the pyra- 
m id codeword. 

The  algorithms are most simply implemented if the 
values for N(1, k) are stored in memory for 1  = 1,. . . , L  
and  k = l;.+, K. Since K is roughly proportional to the 
product RL, the memory requirement is proportional to 
RL2. Both the enumerat ion encoding and decoding al- 
gorithms require at most one  loop through the algorithm 
for each PVQ vector component.  
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Example: Using the pyramid S(4,2), binary encode the 
PVQ codeword x = (0, l,O, - 1). By direct computation 
N(4,2) = 32, N(3,2) = 18, N(2,2) = 8. 

0) Set b = 0; i = 1; k = 2. 
1) xi = 0, so b = 0. 
2) i = 2, k = 2. 
Repeat. 
1) ]xZ] = 1, so b = 0 + N(2, 2) + [(l - sgn (l))/ 

2]N(2,1) = 8. 
2) i = 3, k = 1. 
Repeat. 
1) xg = 0, so b = b + 0 = 8. 
2) i=4, k=l. 
Repeat. 
1) xq = - 1, so b = 8 + N(0, 1) + [(l - sgn( - l))/ 

2]N(O, 0) = 9. 
2) i = 5, k = 0, so stop with b = 9. 

D. Asymptotic Performahe 

Let DpvQ(R) be the normalized mse for pyramid quan- 
tization at rate R. This distortion is certainly lower bounded 
by the distortion in the Shannon lower bound (SLB) [23] 
to the rate-distortion function, 

D&R) 2 D,,,(R) = $2-2R. (18) 

However, a better approximation is possible. Since the 
PVQ output vectors are a regular subset of points in the 
cubic lattice, the normalized mse per quantization cell can 
asymptotically (in dimension) approach a value no smaller 
than l/12. (Interestingly, this is also true for several other 
lattices (such as A, and 0,) as well [17], and so basing a 
PVQ on such lattices would provide similar asymptotic 
performance.) This normalized mse is precisely that ob- 
tained from optimum scalar quantization of a uniformly 
distributed source, or equivalently, from optimum scalar 
quantization of each component (i.e., rectangular vector 
quantization) of a vector of i.i.d. uniform random vari- 
ables. The resulting mse per dimension is then 

mseunirorm = ~,22-*~. (19) 

It remains to relate u,’ to the parameters of the Lapla- 
cian source, and this can be done using Shannon’s notion 
of entropy power [l]. All vectors X to be PVQ encoded 
have “sample differential entropy” of exactly log 2e/X. 
That is, 

- ;1og f&q = log; 

for each 2. For an i.i.d. uniform source, say Y, every 
realization satisfies 

- ; log fu( Y) = log2&,, (21) 

since the density, fY( y), is constant. Hence equating the 
entropies of (20) and (21) (equivalently, measuring the 
volume of the pyramid with a hypercube), the equivalent 

variance is 

e2 
02= - u 3h2 (22) 

so that, using (19), the PVQ distortion is approximated as 

D&R) = $2-2R = ;(E[,.Y,])22-2R (23) 

for large enough dimension. Implicit in the development of 
(23) are the assumptions that the PVQ lattice points are 
distributed rough!y uniformly on the pyramid and that the 
distribution of X is roughly uniform on the pyramid 
surface. 

For large rates the PVQ performance can be compared 
with the (Shannon lower bound to the) rate-distortion 
function in another way. To PVQ encode a memoryless 
source and achieve an mse distortion D requires, from 
(23), a rate 

RPVQW = ; log2&. 
Comparing this with the rate R,,, required in the 
Shannon lower bound to the rate-distortion function (18) 
indicates that the PVQ requires an increased rate of 

1 er 
R,, - R,,, = y log, a - 0.255 bits. 

This is precisely the rate increase required for optimum 
scalar quantization with entropy coding [4], [28]. Signifi- 
cantly, however, the PVQ does not require the variable 
length codewords typically used in entropy coding which 
can cause synchronization problems with noisy channels. 
Further, the entropy coding approach can only be im- 
proved by using vector, instead of scalar, quantization. The 
PVQ performance can be improved by using a better 
lattice. For example, if the PVQ codewords were taken 
from the Leech lattice, then replacing the cubic lattice 
value for mse per quantization cell of l/12 with the known 
[17] Leech lattice value of 0.06577 . . . (i.e., multiply (23) 
by 12 x 0.06577 . . . ) yields an expected PVQ distortion 
of 

0.263 X e2 
D LeechPVQ - 

A2 
2-2R. 

This would reduce the required rate to only 0.084 bits 
above the rate-distortion bound. 

If the thresholding described in the previous section is 
included in the encoding algorithm, then the pyramid 
S( L, L/A) is modified to S(L, L[T + l/X]e-*r). This 
follows since, if X’ is the source vector after thresholding, 
namely, 

x; = 
i 

xi, if IX,] 1 T 
0, if IX,] rl T, 

then E[]]X’]]i] = L[T + l/X]e-‘r. Parameter u,” must 
then be modified, so that by replacing l/A with (T + 
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l/X)e-‘r, (22) becomes 

ee2”. (24) 

The  thresholding operation introduces the additional dis- 
tortion (per dimension) 

E[X21,X, < T] . P,(lXl I T), 
so that the overall mse distortion for the PVQ with 
thresholding is approximated as 

DPVQT( R) = G  (T + k)2ep2hT2p2R 

The threshold value T  can be  selected to m inimize (25), 
and  this ‘m inimizing value is easily computed from the 
necessary condition 

(26) 

Equations (25) and  (26) must be  approached with some 
caution. Since the thresholded vector X’ has components 
that can assume a  value x’ = 0  with positive probability 
1  - eeAT, the entropy power argument breaks down. For 
the optimizing T  in (26) DPVQT(R) can actually drop 
below the Shannon lower bound for very small rates 
(R < 1). For larger rates, however, (25) provides a  useful 
approximation to the reduction in mse that can be  achieved 
through thresholding. The  thresholding operation is par- 
ticularly useful at rate R = 1, and  this is borne out by the 
Monte Carlo simulations presented in Section VI. 

E. A Product Code PVQ 

For moderate sizes of dimension, significant distoction 
may be  introduced in approximating X by X E 
S(L, L/A). Equivalently, the relative variance of Y in (2) 
may be  appreciable. A general  VQ design can be  based on  
concentric pyramids, with the number  and  location of 
output vectors on  each pyramid selected to m inimize the 
average distortion. To  simplify design complexity, a  prod- 
uct code [24] PVQ is designed with identical relative orien- 
tation of output vectors on  each pyramid, and  the pyra- 
m ids are indexed by quantized versions of r. That is, f 
single pyramid VQ is designed for normalized vector X 
(with 2RvL output points), and  a  scalar quantizer designed 
for r (with 2Rr output levels). The  (PVQ) average rate per 
dimension R, and  the scalar quantizer rate R, must be  
selected to m inimize the overall distortion but are con- 
strained to satisfy 

R,L f R, = RL. (27) 
If Y = PVQ(X) is the pyramid quantizer output and  
i = Q(r) the scalar quantizer output, then the product 
code output is Y = iY. 

Since the PVQ was specified in the previous section, it 
remains to design an  opt imum quantizer for r. The  mse and K’(L(R - R,)) = dK(L(R - R,))/dR,. 

encountered in representing X by X E S(L, L/X) is ap- 
proximated (using (8) and  (9)) as 

The  approximation in (28) is exact if X is the orthogonal 
projection of X onto the appropriate face of the pyramid. 
Assuming that the set of vectors X for which (28) is not 
exact contribute negligible additional distortion, then dis- 
regarding this unimportant set, and  noting that from (8) 
]]S]]i = L  and  ](S]J, = a, the expected value of (28) 
becomes 

E ;,lX - XII; 

= i var [ ]XJ]. (29) 

From the central lim it theorem, the random variable inside 
the absolute value signs in (29) converges in distribution to 
a  Gaussian random variable. Provided the approximation 
in (29) is valid, it then follows that for large dimension it is 
appropriate to scalar quantize r with the Max [3] (Gauss- 
ian) quantizer. Numerical experience has shown that the 
Max quantizer is appropriate for small dimension as well. 

Rates R, and  R, can be  selected in an  opt imum way by 
approximating the PVQ performance by (23) or (25) and  
by approximating the scalar quantizer distortion by the 
Huang and Schultheiss [25] mode l for the Max quantizer. 
Explicitly, the Max quantizer distortion is mode led as 

D,,(R,) = o~K(R,)~-*~,, (30) 
with K(R,) 2  1  and  K(R,) selected to fit the Max mse 
data [3]. 

Using (3), (25), and  (30), the overall product code PVQ 
(PCPVQ) distortion is 

D PCPVQ@) = DPVQT&) + &~(Rr)2-2R., (jl) 

and rates R, and  R, must be  selected to m inimize (31) 
subject to (27). This opt imum rate allocation is easily 
comvuted as 

L  
R, = -R- 

L+l 2(L1+ 1) G(RJJ, 

R, = 

where 

G(R,) = log, 
i 

3e2”T 

e2(1 + TX)2 

K’(L(R - R,)) 
2Lln2 + K(L(R - R,)) 

II 
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V. OTHERSOURCES 

The basic PVQ approach may be extended to other 
memoryless sources (or stationary sources with memory, 
but treated as memoryless) by modifying parameter A 
according to 

1 
X = E[lxill. (33) 

That is, for an arbitrary source (with finite variance) that 
satisfies the ergodic property 

llm 
7 + E[lxill> 

the pyramid S(L, L/X), with l/X as in (33), is ap- 
propriate for source coding. Further, provided that the 
approximation in (28) is valid, (29) demonstrates that 
asymptotic in dimension there is negligible distortion in- 
troduced in approximating X by the vector X E 
S( L, L/X) that is closest to X. Significantly, however, the 
distribution of X on S(L, L/X) is generally nonuniform, 
so that finding a good codeword assignment for X may be 
extremely difficult. Despite this difficulty, if (29) is valid, 
then it still follows that for a wide variety of memoryless 
sources any product code based on the pyramid structure 
should treat I]X]li/ & as a Gaussian random variable (for 
large L), and consequently, Max quantization is still ap- 
propriate for radial parameter r. 

Regardless of the validity of (28) and (29), for a class of 
distortion criteria (including the mse distortion measure), 
simply scaling X to a point on the pyramid (rather than 
finding the closest point) is a sufficient first step in con- 
structing a PVQ source code. This is established by the 
following theorem. 

Theorem 3: Let X, be a stationary ergodic source 
satisfying E [ IX,]“] < cc for some fixed value of v, 1 I v 
< cc, and 

1L lim,,, ,c r=l 
Ma = m,,q 

with probability 1 for /3 = 1, v. For any (Y satisfying 0 < (Y 
I v, if 8 = LEIIXl]X/llXlll, then 

;,,x - it,,; -+ 0 as L+cQ. 

Proof: Let X = XLE[lXl]/llXlll. Then 

;,,x - Jw 

1 ,,Xl,i * X n a =- 
L LE[IXIl - x y II /I 

1 = 
E[IXI1” 

1 

s ww 

The latter term converges to E[IXI”]*‘” < cc, the first 
term is clearly bounded, and by the ergodic assumption 
the middle term converges to zero as L increases. 

The development of Section IV is now extended to 
several sources of interest. The product code PVQ may 
then be easily determined by minimizing the equivalent of 
(31). 

A. Gaussian 

For the Gaussian source with variance a*, 

1 

or, with thresholding, 
1 
x = E[Ixl~lxl > T] * f’r[lXl ’ Tl 

=uEexp{s). 

The PVQ distortion of (22) is then extended to 

2e2u2 
D PVQT( R) 2: ~e~TZ/022~2R 

+u2P,(IXJ 5 T) - 

and the minimizing threshold value satisfies 

c$exp($)2-2R-,=0. (35) 

As before, if T > 0, then (34) is not very accurate for very 
small rates but is reasonably accurate for R 2 1. 

An alternative approach to VQ design, particularly for a 
Gaussian source, would be to design a spherical VQ (SVQ) 
with output points corresponding to the lattice points that 
also lie on a sphere in L-dimensional space. Sloane’s 
sphere packing results [27] would be particularly useful for 
such a design. If the cubic lattice (or the A, or D,, lattices) 
were used for the design, then by replicating- the analysis 
of (18)-(23) for large dimension the expected distortion of 
the SVQ would be 

DsvQ(R) = ;u22-2R. 

Comparing (36) to (34) with T = 0, the spherical approach 
is superior to the pyramid approach by a factor of a2/4e 
(about 0.42 dB). Note, however, that (36) will remain the 
same for SVQ encoding of any other source (of the same 
variance). In particular, for the Laplacian source, compar- 
ing (36) to (23), the PVQ approach is superior by a factor 
of e/r (about 0.63 dB). 

B. Uniform 

Let X be uniformly distributed on (-A/2, A/2), with 
variance u2 = A2/12. Then E[ IX]] = A/4, and (23) be- 
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comes 

DpvQ(R) = ;u'Z-'~. (37) 

With thresholding, analogous to (25) the distortion is 

D PVQTcR) = e "[$ - $p2-"+ -$ (38) 

where the minimizing value of T satisfies 

T= $u- ;]2-2R. 

From (37) the PVQ obviously provides mse distortion 
considerably larger than that of the optimum scalar quan- 
tizer and so is an inappropriate choice for encoding a 
uniform source. The difficulty is that the distribution of X 
is decidedly nonuniform on the pyramid. Comparing (37) 
with (36), the SVQ approach is superior (but also consider- 
ably worse than optimum scalar quantization) by a factor 
of 3e/2r (about 1.1 dB). 

C. Gamma 

The memoryless gamma source has density [28] 

: 
PAX) = ii&q exp 

ml 
[ I 

-- 2u 

and mean absolute value 
1 
i = E[,X,] = +. 

Hence even without the thresholding operation, (23) be- 
comes 

DpvQ(R) = ;d-2R, (39) 

which is significantly better than the distortion of the 
optimum scalar quantizer. Analogous to (25) and (26), the 
optimum threshold parameter can be selected numerically. 

As with the Gaussian source, comparing the PVQ per- 
formance with that of an SVQ (compare (39) with (36)), 
the PVQ is superior by a factor of 2e/3?r (about 2.4 dB). 

D. Generalized Gaussian 

The generalized Gaussian density is [26] 

px(x) = Cle-c+Jy, v>o 
where 

c, = v(a, +wl/v) 

c2 = MT vr 

var(X) = u2. 
The entropy is easily computed to be 

h = C,E[(Xl’] - lnC,, 

and the mean absolute value is 

2GW/v) 
EmI = vc;,’ . 

For large rate and dimension the expected mse distortion 
for PVQ encoding is then 

DpvQ( R, V) = : 2c~~~v) i 1 22-2R 

or, in terms of rate, 

Rp,,(D, v> = &‘g, ; 

The Shannon lower bound for 

[2c;$yqt (40) 

the memoryless gener- 
alized Gaussian source is given by 

RSLB( D, v) = h - ilog2lreD. (41) 
Comparing RSLB to RPVQ indicates that for a given (small) 
distortion the PVQ requires a rate RpvQ = RSLB + AR,, 
larger than the minimum rate of the Shannon lower bound. 
Specifically, 

(42) 

where p = E [ ] X] “1 and is plotted in Fig. 2 as a function of 
v. For v = 1 the generalized Gaussian density coincides 
with the Laplacian density and AR,,, = 0.255 bits, as 
was shown earlier. For v f 1 the PVQ requires (for the 
same distortion) a slightly larger rate than does scalar 
quantization with entropy coding but does not require 
variable length codewords. 

AR 

Bits 

t 

I t 

1.0 2.0 3.0 ” 

Fig. 2. AR,,,, AR,,, versus Y for generalized Gaussian source 

Equations (40)-(42) can be repeated for the (uniform 
lattice) SVQ, and the resulting AR,,, is also shown in 
Fig. 2. For large values of parameter v the value of AR svQ 
is smaller than AR,,, but by no more than 0.188 bits 
(corresponding to v + cc and the uniform density). For 
small v the PVQ is superior. Interestingly, in transform 
coding both speech [32] and image [33] sources have trans- 
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form coefficients that are well-modeled by Laplacian or 
gamma densities. Fig. 2 then implies that the PVQ is 
perhaps a better choice than the SVQ for the transform 
coding of such sources. 

VI. PERFORMANCE 

The performance of the PVQ was evaluated by Monte 
Carlo simulation for memoryless Laplacian, gamma, and 
Gaussian sources. The average mse was computed for a 
block of 1000 random (i.i.d., zero-mean, and unit variance 
component) vectors generated by a random number gener- 
ator and then averaged over 100 blocks of such vectors. 
The mse performance is summarized in Tables I-III and 
Figs. 3 and 4. 

The Monte Carlo simulations verified the analytical 
expressions approximating the PVQ performance that were 
obtained in Sections IV and V. However, the PVQ encod- 
ing of the gamma source was better than anticipated (from 

(39)) for the low rates simulated. For th! gamma source, 
the nonuniformity of the distribution of X on the pyramid 
surface is apparently well matched to the PVQ encoding 
procedure. As evidenced by Fig. 4, the PVQ performance 
is quite close to the rate distortion bound and significantly 
better than the mse of the optimum scalar quantizer. In the 
high rate case, comparing (39) to the known optimum 
scalar quantizer [28] indicates that the PVQ provides an 
improvement of 8.40 dB. 

For the Laplacian source, the Monte Carlo simulations 
yielded mse values very close to those expected from the 
asymptotic performance expression (23). At a rate of 1 
bit/dimension, the thresholding is very important in re- 
ducing the mse. However, for larger rates (3 bits/ 
dimension or above), thresholding offers negligible im- 
provement in performance. For high rates, comparing (23) 
to the optimum scalar quantizer [28], the PVQ provides a 
5.64-dB improvement in mse performance. 

TABLE I 
MONTE CARLO SIMULATIONS OF THE PYRAMID VECTOR QUANTIZER M S E  PERFORMANCE FOR A  

ZERO-MEAN UNIT-VARIANCE MEMORYLESS LAPLACIAN SOURCE ENCODED AT 
AN AVERAGE RATE OF R BITS / DIMENSIONS 

Mean Square Error 
R=l R=2 R=3 

(T = 0.75, y = 0.73) (T = 0.4, y = 0.94) (T = 0.17, y = 0.98) 

PVQ(L = 16) 

PVQ(L = 32) 

PVQ(L=48) 

PVQ(L=64) 

Distortion-rate 
bound [30] 

Optimum scalar 
quantizer 1291 
DPVQ(R) 

DPVQT(R) 

0.310 
(K=4,N=O) 

0.295 
(K=7,N=2) 

0.283 
(K= 11, N = 0) 

0.281 
(K = 14, N = 2) 

0.2178 

0.5 

0.3079 0.07697 0.01924 
0.2464 0.0750 0.01921 

0.0907 
(K = 10, N = 3) 

0.0778 
(K= 21, N = 3) 

0.0773 
(K= 31, N = 3) 

0.0773 
(K = 41, N = 3) 

0.0542 

0.1765 

0.0233 
(K= 22, N = 4) 

0.0210 
(K= 45, N = 4) 

0.0202 
(K=68,N=4) 

0.0198 
(K = 91, N = 4) 

0.0136 

0.0514 

‘For each product code PVQ, the parameters are L, K, N, T, and y, where L is the 
dimension, K the pyramid index in (11) N the number of scalar (Max) quantizer bits for radial 
parameter r, T  the threshold in (15), and y the scale factor in (14). 

TABLE II 
MONTE CARLO SIMULATIONS OF THE PYRAMID VECTOR QUANTIZER M S E  PERFORMANCE FOR A  

ZERO-MEAN UNIT-VARIANCE MEMORYLESS GAMMA SOURCE ENCODED AT 
AN AVERAGE RATE OF R BITS / DIMENSIONS 

Mean Square Error 
R=l R=2 R=3 

(T = 0.45, y = 0.82) (T = 0.2, y = 0.92) (T = 0, y = 0.98) 
PVQ(L = 16) 0.218 0.0503 0.0130 

(K=3,N=3) (K = 10, N = 3) (K=22,N=4) 
PVQ(L = 32) 0.170 0.0397 0.0105 

(K=7,N=2) (K = 21, N = 3) (K= 45, N = 4) 
PVQ(L=48) 0.157 0.0374 0.00988 

(K=lO,N=3) (K = 31, N = 3) (K= 68, N ='4) 
PVQ(L= 64) 0.148 0.0370 0.00959 

(K=14,N=2) (K = 41, N = 3) (K= 91, N = 4) 
Distortion-rate 0.140 0.030 0.00693 

bound [30] 
Optimum scalar 0.665 0.233 0.0713 

quantizer [30] 
DPVQ(R) 0.205 0.0513 0.0128 

aThe product code parameters L, K, N, T, and y are as in Table I. 
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TABLE III 
MONTE CARLO SIMULATIONS OF THE PYRAMID VECTOR QUANTIZER MSE PERFORMANCE FOR A 

ZERO-MEAN UNIT-VARIANCE MEMORYLESS GAUSSIAN SOURCE ENCODED AT 
AN AVERAGE RATE OF R BITS / DIMENSION= 

Mean Square Error 
R=l R=2 R=3 

(T = 0.75, y = 0.64) (T = 0.28, y = 0.92) (T = 0, y = 0.98) 
PVQ(L = 16) 0.358 0.111 0.0257 

(L=15, K=4, N=O) (K = 11, N = 1) (K= 25, N = 2) 
PVQ (L = 32) 0.353 0.107 0.0263 

(L=24,K=6,N=O) (K = 21, N = 3) (K=47,N=2) 
PVQ(L= 48) 0.355 0.104 0.0251 

(L = 47, K = 11, N = 0) (K= 32, N= 1) (K=71, N=2) 
PVQ(L = 64) 0.357 0.1048 0.0250 

(L=61,K=14,N=O) (K= 43, N = 0) (K= 94, N = 2) 
Distortion-rate 0.25 0.0625 0.016525 

bound [l] 
Optimum scalar 0.3634 0.1175 0.03454 

quantizer [3] 
DPVQ(R) 0.392 0.0980 0.0245 
D~vodR) 0.301 0.0960 0.0244 

aThe product code parameters L, K, N, T, and y are as in Table I. 

MSE 
(log scale) 

. - 

1 2 3 Rate (bits) 

Fig. 3. Normalized mse versus rate for L-dimensional PVQ encoding of 
memoryless Laplacian source. 

For the Gaussian source, the PVQ offers little improve- 
ment over the optimum scalar quantizer at a rate of 1 
bit/sample, but more significant reduction in mse for 
larger rates. For large rates, the Max scalar quantizer 
provides an mse distortion that is a factor of 2.72 larger 
than the rate distortion function [25], while for large 
dimension the PVQ provides an mse (from (34) with 
T = 0) of 2e2/3~ = 1.568 times the rate-distortion func- 
tion. Thus for large rates the PVQ provides an improve- 
ment of 2.39 dB over the optimum scalar quantizer. 

In Fischer and Dicharry [16], LBG [9] algorithm-based 
VQ performance is reported for memoryless Gaussian, 

Laplacian, and gamma sources. The results in [16] are 
consistent with those, of Tables I-III, but the former 
results were limited (because of the computational burden 
of the LBG method) to either a rate of 1 bit/dimension 
and six or fewer dimensions, or two dimensions and 5 bits 
or less. For Laplacian and gamma sources, the l-bit/ 
dimension six-dimensional VQ’s of [16] provide mse dis- 
tortions only slightly (less than ten percent) larger than 
those of the 16-dimensional PVQ. Although the PVQ is 
based on the simple (and asymptotically suboptimum) 
cubic lattice, as evidence by Figs. 3 and 4 the advantage of 
using large dimensions is considerable. 
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I C 

1 2 3 Rate (bits) 

Fig. 4. Normalized mse versus rate for L-dimensional PVQ encoding of 
memoryless source with gamma pdf. 

In Sayood, Gibson, and Rost (SGR) [20], four-dimen- 
sional AZ lattice quantizers were designed for rate 1 and 2 
bits/dimension encoding of memoryless Laplacian and 
gamma sources. The PVQ mse performance in Tables I 
and II is uniformly better than the results in [20], due to 
the larger dimensions considered. For example, in [20] a 
l-bit/dimension Laplacian VQ provided an SNR of 3.97 
dB, while for the PVQ the SNR is 5.09 dB (for L = 16) or 
5.51 dB (for L = 64). From the results in [17] it is clear 
that for moderate sizes of dimension (say, L - 16) the A,* 
lattice is superior to the uniform lattice, so that if the SGR 
quantizer could be extended to 16 dimensions the perfor- 
mance should be slightly better than that of the PVQ. 

The SGR lattice quantizer (and many other lattice 
quantizers) differs from the PVQ in two important re- 
spects. First, the SGR approach uses a lattice centered at 
the origin and adjusts the lattice density (i.e., radially 
scales all the lattice points) to “match” the probability 
density function (pdf) of the source to be encoded. The 
PVQ is based on Shannon’s notion of a region of high 
probability [l] and the sphere hardening property [34] and 
assigns the (lattice point) codewords to a specific surface 
(the pyramid) in L-dimensional space, with no codewords 
either inside or outside this surface. The product code 
PVQ uses a radial parameter (the 1, norm) to radially scale 
the codewords on a nominal pyramid, and this is different 

(and simpler) than classifying points in a lattice as lying on 
concentric (pyramid) shells. Second, the SGR approach 
provides a general encoding algorithm based on the sym- 
metry of the lattice, but for large code book sizes does not 
address either how the lattice can be effectively truncated 
to maintain a fixed coding rate, nor how the lattice code- 
words can be enumerated to form binary codewords for 
digital transmission. The PVQ approach solved these prob- 
lems be finding an explicit formula for computing the 
number of lattice points on a pyramid and by developing 
simple enumeration encoding and decoding algorithms for 
representing each lattice point codeword as a binary 
codeword. 

In Abut et al. [12], LBG algorithm-based vector quanti- 
zation is reported for autoregressive (AR) sources with an 
i.i.d. Laplacian driving process. These results are not di- 
rectly comparable with the present PVQ performance be- 
cause of the source AR structure. For example, at a rate of 
1 bit/dimension and scalar quantization, the SNR in [12, 
Fig. l] is approximately 3.8 dB. However, the optimum 
l-bit scalar quantizer for a memoryless Laplacian source is 
known [29] to provide an SNR value of only 3.0 dB. 
Similarly, for two dimensions, [12] has an SNR value of 
about 4.3 dB, while the best known two-dimensional 2-bit 
Laplacian VQ [16] provides an SNR of 3.67 dB. Basically, 
the AR model used in [12] causes the resulting source to be 
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rather unlike the Laplacian driving process (and presuma- 
bly “more Gaussian”), so that the VQ performance is 
better than that for the corresponding memoryless Lapla- 
cian source. Interestingly, by comparing [12] and  [16] for 
the Laplacian source, and  [ll] and  [9] for the Gaussian 
source, it appears that as the vector dimension increases, 
the mse provided by VQ’s for sources with memory ap-. 
proaches the rate-distortion bound at a  faster rate than 
does the mse provided by VQ’s for the corresponding 
memoryless source. 

Most of the LBG algorithm-based VQ’s discussed in the 
literature [9], [ll]-[16] consider a  rate-dimension product 
of less than eight, with product code VQ’s [24] extending 
the rate-dimension product to 12. For large rate-dimension 
products, the LBG method is computationally prohibitive 
because of the exponential growth in required VQ design 
computations (for a  training sequence length proportional 
to the number  of VQ output vectors) and  the complexity 
of encoding. The  encoding complexity can be  reduced 
significantly by using tree search techniques, but the result- 
ing VQ performance is generally somewhat degraded [15]. 
Particularly for 2  or 3  bits per dimension encoding (and 
larger rates), the PVQ offers significant advantages over 
the LBG algorithm VQ’s in simplifying both the VQ 
design process and the encoding complexity. 

VII. CONCLUSION 

for some fixed real number p satisfying 1 < /I < co. Clearly, 
1  

By extending the geometric approach of Sakrison [21], 
the geometric properties of i.i.d. Laplacian source were 
developed and used to prove a  source coding theorem. 
Analogous to entropy coding of discrete ensembles, the 
geometric approach attempts to locate VQ output vectors 
solely in the region of L-dimensional space of high prob- 
ability. For the memoryless Laplacian source this implies 
placing the VQ output vectors near the surface of an  
L-dimensional hyperpyramid. This pyramid is indexed by 
the differential entropy of the source, or, equivalently, by 
the mean  absolute value of the source. 

so that E[ a!], E[ a:], var [a,!], and var [as] are bounded. 
From the continuity of px( .), it follows that as 2; varies over 

the set (~2~: IX, - ~2~1 < za}, variable a, =px(.2i)/px(X,) can 
assume any value in the range (af, as). For each i =  1,. . . , L, an 
acceptable 2, exists such that ~(2,) can assume any value in the 
range 

“!P(x,) <  P(%> < a;rp(&Y,). 

Hence an X E T  exists such that (l/L) logf,(x) can assume 
any value in the range 

Motivated by the source coding theorem and geometric 
structure, a  pyramid vector quantizer was developed. The  
PVQ is based on  the cubic lattice points that also lie on  the 
appropriate pyramid. A simple PVQ encoding algorithm 
was derived that is implementable for arbitrary vector 
dimension. The  PVQ was general ized to a  product code 
version and analytical expressions developed for both the 
PVQ and product code PVQ to approximate the large- 
dimensional mse performance. The  pyramid vector quan-  
tizer’s mse performance was evaluated by Monte Carlo 
simulation and compared with the analytical performance 
expressions and several VQ results in the literature. Par- 
ticularly, for rates of 2  bits/dimension or larger, because 
the PVQ can take advantage of encoding large-dimen- 
sional vectors (dimension sizes currently beyond the com- 
putational feasibility of the LBG [9] method), the PVQ 
and product code PVQ offer attractive alternatives to the 
LBG algorithm-based vector quantizers for the memory- 
less sources considered. 

I%fx(X) 1  L  
L  -= 0  L  

log L 
r=l aI 

l%fx(~i) logfx(X) 1 L < 
L  < L  + y ,F l%(4). 

r-1 

Asymptotically, both sums converge as 

and 

k ,i loga~~E[logaS] > 0, 
I-1 

so that there exists a positive integer, say L,, such that if L  > L,, 
then each sum is within c1 of its limit for all X, except on a set of 
total probability A,. Further, choose L, large enough so that c2, 
defined as 

c2 = min( h[log+].E[loga~]) - e1 
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APPENDIX I 
PROOFOFTHEOREMI 

Let E, p <‘la, so that 

;,,x - ml, 
1  

< ca - px - 211; < c. (AlI 

Certainly, (Al) is satisfied if IX, - X,] < cu for each i =  1; . ., L. 
For each vector X define set l’ as 

T  = (2: IX, - x1,1 < cm, for i = l;.., L}. 

Since px(x,) is positive for -cc < x, < co, define as and 
a’ i =  1;. . L  as I) , 3  

and 

a!=max i ’ 
PA%> 1  ____ - 

(2,: ,Xf”!q<c,) px( Xi) ’ p  1  

> O (A4 
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is positive. It follows that X E ‘I exists such that (l/L) logf,(X) 
can assume any value in 

i 
1% fx (Xl 

L - %, 
~ogfx(X) + t 

L 2 
1 

However, for any c2 > 0 and A2 > 0, the convergence in (7) 
implies that a positive integer L, exists such that if L > L,, then 

1% fx ( Xl 
L - 

c* -=z -h(x) < 
l%fx(X) + ~ 

L 2 

except on a set of total probability AZ. Hence (for L > 
max (L,, L2)) for all X (except on a se,t of probability 6 < A, + 
A,), an X E ‘I’ (so that (l/L)]IX - X]IV < cJ exists such that 
(l/L)logf,(X) = -h(x), implying X E S(L, L/A). 

APPENDIX II 
PROOFOFTHEOREM II 

The proof parallels the argument of Sakrison [21]. Using the 
source code construction of l)-3) in Section III, the mae (per 
dimension) may be upper-bounded as 

E LllX -ylll I ;(I - P(c)) + ;P(c) + ;E[/lX- glh] r 1 
where P(E) is the probability that X is not within one of the 
representation regions. The middle term follows since X is cer- 
tainly within a distance 2L/X from some representation point. 
The last term has already been shown to asymptotically decrease 
to zero and so is dropped. 

Probability P(E) may be calculated as 

P(E) 

= 
I _ area of intersection of region i and S( L, L/X) 

total area of S( L, L/X) 

or, since the points are selected at random in 2) 

[ 

area of intersection 2RL 
P(c) = l- 

areaof S(L, L/X) 1 (‘9 
Since S* ( L, E) is the same pyramid shape as S( L, L/A), the 
smallest area of maximum intersection between S*(L, 6) and 
S( L, L/X) occurs if a single face of S( L, L/X) acts as a hyper- 
plane slicing through the centroid of S*( L, E). This can be seen 
by the following argument. The pyramid S(L, L/X) has 2L 
faces, 2L vertices, and at each vertex 2/--l faces meet. The 
vertices may be covered by 2L representation pyramids, each 
centered at a point with a single nonzero coordinate of magni- 
tude L/X - c. Any randomly chosen point on the pyramid 
surface within an Ii norm distance of 2r from a vertex may then 
be represented with such a region, and the resulting area of 
intersection between the representation pyramid and S( L, L/X) 
is A( L, c)/2 (for c < L/X). Any other point selected at random 
on S( L, L/A) must be at least an I, norm distance of 2~ from a 
vertex, and thus within 2c of at most two faces. Such a point can 
then be covered by an appropriately placed representation 
pyramid that intersects with only one face of S(L, L/X). Since 
this latter area of intersection is smaller than A( L, c)/2, the area 
of intersection in (A3) is then bounded from below by the 
(L - 1)-dimensional volume of the intersection of S*( L, e) and 
an (L - 1)-dimensional hyperplane parallel to a face of S*( L, c) 
and passing through the centroid. By direct calculation for 2 I L 

I 6, we determine a bound for this volume as 

area of intersection 2 L V( L - 1, c) , 
Jir (A4) 

where equality occurs if L = 2 and the bound becomes looser as 
L increases. Using (4) and (A4) in (A3) yields the bound for P(E) 

2RL 
2L-l&l 

P(E)< l- 
my L) 

LL-1 . 

i i 

(A5) 
2LJIJ x 

r(L) 
The rate-distortion function for an i.i.d. Laplacian source is 

well-known [23] to be 

R(D) = log?, 
so that 

D = ;2-5 (fw 

The distortion in L dimensions E may then be expressed as 

f= L(1 + 6) 2-R 
x 

for some 6 > 0. Substituting (A7) into (A5) yields 

L J 

For large L, (A6) becomes approximately 

P(c) 2 exp - (’ + S,rP,. , 
I 1 

so that for arbitrary 6 > 0 the probability that X is not within an 
mae distance of e from some representation point y, goes to zero 
as dimension L increases. Hence the encoding scheme of l)-3) is 
asymptotically (in L) optimum and achieves a distortion arbi- 
trarily close to the rate-distortion bound. 

APPENDIX III 

The number of integer coordinate vectors on pyramid S( L, K) 
is denoted N( L, K) and derived as follows. All of the N( L, K) 
possible vectors on S( L, K) are of the form 

i 
x2 

X= 

1. 

: ’ for i = 0, kl;.., *K. 

XL 

The portion of x corresponding to (x2,. . . , xL) has N( L - 1, K 
- Iii) possible permutations. This implies 

N(L,K)=2(N(L-l,K-l)+N(L-l,K-2) 

+...+N(L-l,l)+l)+N(L-1,K). (A9) 
Similarly, 

N(L,K-1)=2(N(L-l,K-2)+... 

+N(L-l,l)+l)+N(L-l,K-1). (AlO) 
Combining (A9) and (AlO) yields the desired result, 
N(L,K)=N(L,K-l)+N(L-l,K-1) 

+N(L- 1, K). 
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