
length I ,  or P,* = PS(O = Pp(o  = Po exp (-an, where Po = 
Ip(0)Ae,,f. Following the approaches taken by Smith (eqns. 9 
and 17 In Reference I), at the threshold we have 

(9) 

In eqn. 9 the Brillouin gain is assumed to have a Lorentzian 
spectral profile and g B  is the peak gain. AJ is the spectral 
width of the Brillouin-gain spectrum.” K is Boltzmann’s con- 
stant. T is the temperature and f. is frequency of the acoustic 

Substituting eqns. 6 8  into 9 we can have 

x [1 - e x p ( e ) ] } - ’  

If K = 0, then q = 0 and eqn. 10 reduces to a previously 
reported relation (eqn. 17 in Reference 1). Using the same data 
given in Reference 1 and 12, eqn. 10 is evaluated. Fig. 2 shows 
the value of P,h as a function of K L  with JIIs(L)/Ip(0)] = 
0.001. This figure indicates that increasing Bragg diffraction 
decreases Plh. It is noted that the parameter JIIs(L)/Ip(0)] = 
0.001 is arbitrarily chosen but Agrawal has used this value in 
Reference 12. 
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Fig. 2 Effect of Bragg diffraction (KL)  on the threshold P,,  of SBBS 
with JIIs(L)/I,(0)] = 0.001 

Conclusions: A perturbation analysis including the nonlinear 
interaction between the pump and Stokes waves, optical loss 
and Bragg diffraction of stimulated backward Brillouin scat- 
tering (SBBS) in single mode optical fibres has been presented. 
We have found that a larger Bragg diffraction induces a 
higher Brillouin gain. The relation between the threshold of 
SBBS and the Bragg diffraction is reported for the first time. 
Furthermore, increasing Bragg diffraction decreases the 
threshold of the SBBS. Because Bragg diffraction is an 
acousto-optic interaction phenomenon the acoustic guidance 
conditions in the singlemode optical fibre can be used to 
adjust the Brillouin gain and the threshold.’ 
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HEXAGONAL DISCRETE COSINE 
TRANSFORM FOR IMAGE CODING 

Indexing terms: Transforms, Fourier transforms, Image pro- 
cessing 

The discrete cosine transform plays an important role in rec- 
tangularly sampled image coding for its excellent per- 
formance in information compaction. Hexagonal sampling is 
the optimal sampling strategy for two-dimensional signals in 
the sense that exact reconstruction of the waveform requires 
a lower sampling density than with the alternative schemes. 
In this Letter, a hexagonal discrete cosine transform (HDCT) 
for encoding the hexagonally sampled signals is presented. 

Introduction: The discrete cosine transform can be used in the 
area of digital processing for the purpose of source encod- 
ing.’,’ Its performance is relatively close to that of the 
Karhunen-Loeve transform which is known to be optimaL3 It 
is known that the hexagonal sampling is the optimal sampling 
scheme for two-dimensional signals which are bandlimited 
over a circular region of the Fourier plane, in the sense that 
exact reconstruction of the waveform requires a lower sam- 
pling density than with alternative schemes!,’ For such 
signals, hexagonal sampling requires 13.4% fewer samples 
than rectangular sampling. In image coding applications, the 
coding eficiency can be increased by using the hexagonal 
sampling scheme. In this Letter, a hexagonal discrete cosine 
transform which can be used in the applications of image 
coding is described. 

Hexagonal D F T :  Let XS(wl, w2) be the Fourier transform of a 
bandlimited continuous-time signal xO(t l ,  f 2 ) .  The periodically 
extended Fourier transform of X,(wl, with the period 
Lectors R’ = (col1, oL2) and Rz = ( C O ~ ~ . ” ~ ” )  is denoted by 
X,(o,, w2). The periodic extension %,(o,, COJ can then be 
determined by X,(CO,, 02) through the convolution 

R,(COl, 0 2 )  = X,(CO,, w2) * f f ” = - -  _ = - -  

x ~ ( C O ,  + io” + joZ1, CO’ + i d 2  + joz2) 
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The inverse Fourier transform is proportional to 

m m  

Let Ai, j )  be the two-dimensional signal with a support 
which is composed of two regularly hexagonal arrays. The 
relationship between x(i, j )  and y ( i ,  j )  is as follows: 

j > O  
x ( - i + N - 2 , - j - l ) ,  jc0 

X, ( t l ,  t 2 )  ' c c 
n = - m  l n - m  

Ai, j )  = ("". j ) ,  x S(w"t, + c d 2 t 2  - 2in, d l t ,  + o P t ,  - 2jn) 

Let 

where I 1 is the determinant of the array. The discrete signal 
x(i, j )  is the signal xO(fl, f 2 )  sampled periodically at 

A two-dimensional lattice is defined as a set of vectors 
{ Y :  Y = iT' + jT2} ,  where i and j are integers and Ti,  i = 1, 2 
are the basis vectors for the lattice. Thus, the period vectors of 
the spatial sampling lattice are 

Therefore, the discrete signal 

x(i, j )  = x,(iT' + j T 2 )  

The frequency sampling lattice can also be derived in a similar 
way. Let T' = (T", T I z )  and T 2  = (TZ1, T Z 2 )  be the spatial 
periods whose magnitudes are large enough that the periodic 
extension is not overlapped in the transform domain. Thus, 
the basis vectors of the frequency sampling lattice are 

where 

TI2 
4 = 1;;: T 2 2 1  

For a finite area sequence with the region of support R,, the 
generalised DFT may then be expressed as 

x ( u ,  U) = 1 x(i, j )  exp (-j+(i, j ,  U ,  U)) 
(i. 1) E R ,  

and 

where M is the number of samples of the signal array 

and 

R,  = (U,  U ) :  -n < - I 
Hexagonal DCT: Let x(i, j )  be a hexagonally shaped finite 
area array with a regularly hexagonal support of R ,  shown in 
Fig. 1. 

782 

The spatial period vectors are T' = [ (3N - 1)/2, N - 11 and 
TZ = ( 1 ,  4 N  - 2). In the transform domain, the frequency 
period vectors are defined as Q' = (271, n) and R 2  = (0, 2 4 .  

. . e  :-y*;:::. 
0 N-1 I 1051111 

Fig. 1 Hexagonal array 
R, = { ( i , j ) : O <  i < 2N - 1,0 < j <  2N - I, l i - j l  c N ]  

The hexagonal cosine transform becomes 

x ( u ,  U) = c ( u ,  U) x(i, j )  cos $(i, j, U ,  U) 
( i .  i) E RN 

and the inverse is 

where M = 3 N Z  - 3N + 1 is the number of samples of the 
signal array 

I/$,  for ( U ,  U) = (o ,o)  
elsewhere C(U, 0) = { 1, 

n 
$(i, j ,  U ,  U) = 3N2 - 3N + 1 {(i - N / 2  + 1 )  

x [(4N - 2 ) ~  - ( N  - 1 ) ~ )  - 6 + 0.5) 

x (2Nu - (2N - l ) ~ ] }  

and 

1 
M 

( U ,  U ) :  - 1 < - ((4N - 2 ) ~  - ( N  - 1 ) ~ )  < 1, 

1 
U { ( U ,  U): 0 5 - M ((4N - 2)u - ( N  - 1)u) < 1 ,  

Performance of information compaction: A linear transform can 
be expressed as 

The variances of the transform coefficients are 

E[X(u ,  U ) ]  = cc j ) x ( k  OlA(i, j ,  U, v)A(k, I ,  U ,  U) 
(i, 17 (k. 11 

In image processing applications, the Markov process is a 
useful model for the image data. We discuss the situation 
where the hexagonal signal meets the first-order Markov 
model, such as 

E[x(i, j)x(k, r ) ]  = p J ~ I i ~ ~ l - ~ ~ / ~ ~ L I ~ ~ 1 ~ ' + ~ 3 / 4 ) L i ~ l l z  

The role that orthogonal transforms play in image coding is 
illustrated in Fig. 2. 

The orthogonal transforms compact most of the energy of 
the signal to a few transform coefficients. Zonal sampling will 
retain those coefficients whose variances are greater than a 
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given threshold. To demonstrate the energy compaction per- 
formance of the proposed hexagonal discrete cosine trans- 
form, let the signal be a first-order Markov process with 
p = 0.9. The transform domain variances of HDCT against 
HDFT for N = 3 are shown in Table 1, in which the variances 
are placed in decreasing order. We see that the proposed 
HDCT is more efficient in energy compaction than the 
HDFT. Therefore, the HDCT is superior to HDFT in image 
coding applications. 

1051121 Fig. 2 Image coding model 

Table 1 TRANSFORM DOMAIN VARIANCES, p = 0.9, 

Component 0 1 2 3 4 5 

N = 3  

HDFT variance 15.429 0.386 0.386 0.386 0.386 0.386 
HDCT variance 15.429 0.966 0.789 0.215 0.215 0.215 

6 7 8 9 10 1 1  12 

0.386 0.122 0.122 0.122 0.122 0.122 0.122 
0.172 0.135 0.121 0.104 0.101 0.701 0.071 

13 14 15 16 17 18 

use of these circuits in many potential applications. Several 
attractive approaches for improving the linearity of MOS 
transconductor circuits have been reported in the liter- 
ature.1-6 In Reference 1, a linear transfer characteristic is 
achieved by two crosscoupled differential pairs operating in 
saturation. A different technique based on current addition 
was proposed in Reference 2. Other linearisation methods use 
additional ideal voltage  source^,^.^ or negative feedback in the 
form of source-degeneration.' Using low-distortion trans- 
conductance amplifiers, video frequency continuous-time 
filters with wide dynamic range are considered in Reference 6. 

In this Letter an alternative circuit technique for improving 
the linearity of a class AB transconductance element is 
described. 

Transconductor cell description: Consider two CMOS pairs 
(Ml, M2) and (M3, M4) in the crosscoupled configuration 
shown in Fig. 1 .  Note that the transistors M5 and M6 work as 

, vdd=5v 

0.087 0.087 0.087 0.087 0.087 0.087 
0.071 0.069 0.064 0.064 0.064 0.064 

Conclusions: A discrete cosine transform for hexagonal arrays 
is presented. It is shown that the proposed transform is 
superior to the HDFT in image coding. 

x-s .  wu 
Institute of Image Processing & Pattern Recognition 
Shanghai Jiao Tong University 
Shanghai 200030, People's Republic of China 
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LINEAR TRANSCONDUCTOR BASED ON 
CROSSCOUPLED CMOS PAIRS 

Indexing t e rm:  Actiuefilters, Circuit theory and design 

A circuit technique based on two CMOS crosscoupled pairs 
for realising a linear CMOS transconductor of class AB is 
prescnted. Design tradeoffs are discussed and a circuit 
example is presented. SPICE simulation results show that, 
for a power supply of f 5 V, the linearity error is controlled 
to 1 % over a & 3 V input range. 

Introduction: Linear transconductors are useful building 
blocks in the design of analogue signal processing systems. 
However, limited linearity is often the major drawback in the 

ELECTRONICS LEl7ERS 25th April 1991 Vol. 27 No. 9 

I I 
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Fig. 1 Linear CMOS transconductor circuit 

source-followers biased by the DC currents I,. Using the stan- 
dard square-law model for MOS devices in their saturation 
region, the currents I, and I,, defined in Fig. 1, are 

where 

and 

v, = K" + VTP (3) 

All undefined parameters have their usual meaning. If the 
transistors Ml-M6 operate in saturation, the following equa- 
tions can be written: 

v, - v, = v, - v, = v, 
VI - v, = v, - VN = v, 

(4) 

(5) 

where V, = VI - V, is the differential input voltage, and V, is 
defined as 

VB = JUdU + V T ,  (6) 

With eqns. 4 and 5, the currents I, and I, can be expressed in 
terms of the voltage V, as 

(8) 
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