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Abstract- Pyramid vector quantization (PVQ) uses the lattice points of a pyramidal shape

in multidimensional space as the quantizer codebook. It is a fixed-rate quantization tech-

nique that can be used for the compression of Laplacian-like sources arising from trans-

form and subband image coding, where its performance approaches the optimal entropy-

coded scalar quantizer without the necessity of variable length codes. In this paper, we

investigate the use of PVQ for compressed image transmission over noisy channels, where

the fixed-rate quantization reduces the susceptibility to bit-error corruption. We propose

a new method of deriving the indices of the lattice points of the multidimensional pyramid

and describe how these techniques can also improve the channel noise immunity of gen-

eral symmetric lattice quantizers. Our new indexing scheme improves channel robustness

by up to 3 dB over previous indexing methods, and can be performed with similar compu-

tational cost. The final fixed-rate coding algorithm surpasses the performance of typical

Joint Photographic Experts Group (JPEG) implementations and exhibits much greater

error resilience.

1  Pyramid Vector Quantization

Pyramid vector quantization (PVQ) was introduced by Fischer [1][2] as a fast and efficient meth

quantizing Laplacian-like data, such as generated by transforms or subband filters [3]-[6] in an image

compression system. PVQ has very simple systematic encoding and decoding algorithms and d

require significant codebook storage. It combines the robustness of fixed-rate codes with the performance

of entropy-coded scalar quantization. Considerable research in PVQ algorithms has culminated 
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performance, error resilient PVQ image compression systems for both transforms [7]-[14] and subband

decompositions [15]-[24]. PVQ has also been implemented in hardware [18]-[20], taking advantage

computationally constructed codebook instead of a stored codebook to build a robust, low power,

rate PVQ decoder.

In this paper, we propose new ways of assigning indices to the points in the PVQ codeboo

improves channel robustness by up to 3 dB over previous enumerations, and up to 6 dB over a ra

enumerated codebook. These new indexing techniques require roughly the same encoding and d

hardware complexity as previous enumerations and can be applied to any of the fixed rate PVQ

systems described previously in the literature. We discuss the theoretical and simulated advantage of

techniques through channel noise models of the PVQ indices and codebooks. Finally, we sh

practical advantages of PVQ by demonstrating an error-resilient PVQ system that exceeds the perfo

of Joint Photographic Experts Group (JPEG) implementations, both with and without channel error.

2  A Brief Overview of Pyramid Vector Quantization
Pyramid vector quantization takes its name from the geometric shape of the points in its codeboo

designed for Laplacian random variables, whose equiprobable contours form multidimensional pyr

This can be seen from the multidimensional Laplacian probability density:

, (1)

where  is a vector of length . The surfaces of equal probability is defined in an  dimension space whe

the  norm of  is a constant, , representing the radius of the surface

 . (2)

The surface given by a fixed  constraint on the coordinates, equation (2), is called a pyramid

literature, the  surface is often referred to by other names: dipyramid or bipyramid, by the shape in th

dimensions; generalized octahedron, from the corresponding Platonic solid; cross polytope becaus

vertex locations; and co-cube, since it is the polyhedral dual of the cube structure upon exchange o

locations and face normals[25][26][27]. 

The radial distribution for  can be obtained from the convolution of  exponential distributions

an Erlang distribution,

fX x( ) λ 2⁄( )l e
λ– xi

i 1=
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∑
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add extra word to make “JPEG” make sense
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The PVQ codebook, , consists of the set of integer vectors of length  whose absolute 

sum to : , as shown in figure 1 in two and three dimensions. It 

be obtained by intersecting the pyramid surface of integer radius , described by equation (2), with th

cubic lattice, resulting in a regular distribution of codebook points on the pyramid surface. The PVQ

codebook, , is typically scaled to fit the desired pyramid contour. For very large vector dimen

, PVQ has asymptotic properties: by the Central Limit Theorem, the radial distribution  appro

that of a Gaussian; by the Asymptotic Equipartition Theorem [1], the vector  clusters uniformly o

pyramid of radius .

This section has covered the geometric structure of the PVQ codebook. The following two se

describe the enumeration of the pyramid codebook  – the method which assigns a transm

index to each PVQ codebook vector.

3  Magnitude PVQ Enumeration
Fischer introduced the first PVQ enumeration technique [1] that showed the feasibility of assigning 

indices to the pyramid codebook by computation. We shall refer to Fischer’s original technique as

magnitude enumeration in this paper, for reasons that will later become clear. Magnitude enum

serves as an excellent starting point to introduce PVQ enumeration, so we devote some time

description in this section, showing some simplifications to the existing enumeration equations. I

sections, we will use the same terminology to introduce and develop our own enumeration techniqu

Enumeration assigns a unique index to all possible vectors in the PVQ codebook, , impa

sorting order to the PVQ codebook vectors. For example, magnitude enumeration sorts each vecto

on the magnitude of each of its elements. The first two vectors in the codebook  begin with 

zeroes: index 0 corresponds to the vector  and index 1 corresponds to the 

. Systematic sorting for enumeration is done through counting formulas for the numb

vectors in the pyramid; this is a common concept to all pyramid enumerative techniques.

The number of vectors in the pyramid codebook  is denoted by . This is related 

binary codeword index length, which is  bits.  can be viewed as the number of 

 integer values in a vector can have an absolute sum of . Of these  possible combination

 of them result in the value  as the first element (for  an integer between  and 

the definition of . Hence,  is the sum of the number of ways of obtaining a pyra

codebook vector starting with , for every possible value of . This is written as

fR r( ) λr
r
l 1–

e
λr–

l 1–( )!
---------------------------=

P l k,( ) l

k P l k,( ) x:xi Z∈ and xi∑ k=
 
 
 

=

r k=

P l k,( )

l fR r( )

x

r l λ⁄=

P l k,( )

P l k,( )

P l k,( ) l 1–

0 0 … k, , ,( )

0 0 … k–, , ,( )

P l k,( ) N l k,( )

log2N l k,( ) N l k,( )

l k N l k,( )

N l 1– k i–,( ) i i k– k

N l k,( ) N l k,( )

i i

missing in text
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where the boundary conditions are  for all integer , and  for integer 

recursive application of equation (4) will obtain a value for any .

Equation (4) has a geometric interpretation: If one of the dimensions is fixed for a pyram

dimension , then the resulting shape is a pyramid in dimension . This is shown graphically in fi

by fixing the  dimension for the pyramid in three dimensions to obtain a pyramid in two dimension

 Equation (4) has a lexicographic interpretation: Just like the subranges of Webster’s dictiona

ordered in terms of each letter from ‘a’ to ‘z’, the subranges in magnitude enumeration are ordered in terms

of the magnitude of each vector element, , by the following sequence: . Supp

 is a vector of length , , in the pyramid codebook . Based on the first ve

element, , the integer range from 0 to  can be subdivided into subranges of

 for  between  to , using equation (4). If the first element is , for exam

then the subrange consists of the  remaining vector elements with an absolute sum of , a

size .

Using the subrange sizes and their order, it is possible to calculate the offset of each subran

zero in magnitude enumeration. The magnitude enumeration index offset of the subrange consi

vectors with first element  in the codebook  is denoted as . This is calcu

from the two first subranges representing  and ,  a

, as 

(5)

The offset for positive , in equation (5), is calculated by adding all subranges with a smaller mag

The offset for negative , is just the sum of the offset for positive , , and the subrange for

positive , . Although equation (5) follows the original definitions given in [1], it is not the

simplest definition. With manipulations, either through massaging equation (4), or through applicat

the volume summation formula, equation (48), it is easy to see that

N l k,( ) N l 1– k i–,( )
i k–=

k

∑=

N l 0,( ) 1= l N 0 k,( ) 0= k 0≠

N l k,( )

l l 1–

x1

i 0 1 1– 2 2– … k k–, , , , , , ,

x l x x1 x2 … xl, , ,( )= P l k,( )

x1 N l k,( ) 1–

N l 1– k i–,( ) i k– k x1 3=

l 1– k 3–

N l 1– k 3–,( )

x1 i= P l k,( ) OM i l k, ,( )

i 0= i 1= OM 0 l k, ,( ) 0=

OM 1 l k, ,( ) N l 1– k,( )=

OM i l k, ,( )

N l 1– k,( ) 2 N l 1– k j–,( )
j 1=

i 1–

∑+

OM i l k, ,( ) N l 1 k i–,–( )+







=

for , andi 2≥

for .i 0<

i

i i OM i l k, ,( )

i N l 1 k i–,–( )

missing “1”

an “l” not “i”
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The magnitude PVQ index of a vector  is obtained from summing the offsets of nested subr

and is recursively defined from equation (6). Each recursive step removes another element from th

. Let  be the first element of the vector ; let  denote the subvector of the vector  excludi

first element. Then the magnitude enumerated index  is recursively defined as

, (7)

where the “empty” vector of no elements has an index . For example, suppose the

vector of  is to be enumerated on the pyramid codebook . Recursive applicati

equation (7) yields

. (8)

The decoding proceeds as follows. Given a received magnitude enumerated index, , in the p

codebook, , the first vector element  is determined from the unique subrange for w

. Once the first element is decoded, the offset of 

subrange is subtracted from the original index, resulting in a number ranging from 

. The remaining elements now form a vector of length  with absolute sum

. This is recursively decoded by the same procedure as before, except the new in

, corresponding to the vector of  elements in the pyramid codeb

.

Fischer [1] derives a fast method to calculate . From equation (4), the relationship be

 can be simply expressed as

 . (9)

This can be rearranged into

. (10)

Since magnitude enumeration converts between pyramid codebook vectors and indices by fo

involving various combinations of , the pyramid codebook need not be stored. This means

codebooks can be very large, easily having between  to  entries. For maximum efficienc

OM i l k, ,( )
N l k,( ) N l k i–,( ) N l 1 k i–,–( )––

N l k,( ) N l k i–,( )–





=

for , andi 0>

for .i 0≤

x

x x1 x x 1[ ] x

IM x l k, ,( )

IM x l k, ,( ) OM x1 l k, ,( ) I+
M

x 1[ ] l, 1– k x1–,( )=

IM ( ) 0 0, ,( ) 0=

1 0 1–, ,( ) P 3 2,( )

OM 1 3 2, ,( ) OM 0 2 1, ,( ) OM 1– 1 1, ,( )+ +=

IM 1 0 1–, ,( ) 3 2, ,( ) OM 1 3 2, ,( ) IM 0 1–,( ) 2 1, ,( )+=

OM 1 3 2, ,( ) OM 0 2 1, ,( ) IM 1–( ) 1 1, ,( )+ +=

Im

P l k,( ) x1

OM x1 l k, ,( ) Im OM x1 l k, ,( ) N l 1– k x1–,( )+<≤

0

N l 1– k x1–,( ) 1– l 1–

k x1–

I ′m Im OM x1 l k, ,( )–= l 1–

P l 1 k x1–,–( )

N l k,( )

N l k,( ) N l k 1–,( )–

N l k,( ) N l k 1–,( )– N l 1– k,( ) N l 1– k 1–,( )+=

N l k,( ) N l k 1–,( ) N l 1– k,( ) N l 1– k 1–,( )+ +=

N l k,( )

264 2128
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values  are usually precomputed, resulting in a table of size , logarithmic in codebook

Alternate methods of deriving  are described in Appendix A.

4  Robust Enumeration of the Multidimensional Pyramid
Error resilience can be achieved through permutation of the PVQ codebook indices to minimize the

of bit-errors on the indices. In general, close Hamming neighbors in the codebook indices 

correspond to close spatial neighbors on the pyramid. Since PVQ codebooks are usually far too large to

have such a permutation map stored in memory, we investigate new enumeration method

automatically yield robust indices in this section. The original approach was magnitude enumeration,

discussed in section 3. The second approach, which we call linear enumeration, is a variant on Fischer’s

magnitude enumeration and was originally used in a slightly different form by Swaszek [28]. The third and

fourth approaches that we develop here use conditional product codes; they are the conditional product

code enumeration and conditional product-product code enumeration techniques, and both have a 3 d

advantage over the magnitude and linear enumerations under random bit errors.

4.1  Linear Enumeration

Linear enumeration relies on constructing a better tree structure than the magnitude enumeration. As

described before, magnitude enumeration divides the subranges by the magnitude of the eac

element, in the order . Adjoining subranges which are close in the indexing s

(and Hamming sense) can be far in a spatial sense. Linear enumeration improves the indexing b

reordering the subranges in a linear fashion as , so adjoining subra

correspond to consecutive values.

The subranges of  in linear enumeration are ordered by value of the first vector eleme

, rather than the magnitude of the first element, as in magnitude enumeration. The off

subrange  of the first element of vector  for linear enumeration is denoted as  and is d

for  by the following equation:

, (11)

and by  for . Through application of the volume summation formula, equation (

the above equation can be simplified to

N l k,( ) lk

N l k,( )

0 1 1– 2 2– … k k–, , , , , , ,

k– k– 1 … 1– 0 1 … k 1– k, , , , , , ,+,

N l k,( )

x1 i=

i x OL i l k, ,( )

k i< k≤–

OL i l k, ,( ) N l 1– k j–,( )
j k–=

i 1–

∑=

OL i l k, ,( ) 0= i k–=
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In equation (12), enumeration for  requires a negative  index in , which should be tr

as zero.

The PVQ index of a vector  can be recursively defined similarly to that of magnitude and linear

enumeration. Each recursive step removes the first element from the vector . Let  be the first ele

the vector ; let  denote the subvector of the vector  excluding the first element. Then the

 is recursively defined as

. (13)

4.2  Conditional Product Code Enumeration

Unlike linear and magnitude enumerations, which divide the subranges by the value of the vector el

conditional product code enumeration forms subranges based on the number of non-zero (or significant)

elements in the vector. Since each significant element is symmetric in distribution, each 

corresponding sign bit. These sign bits can be packed into the least significant bits of the index. As 

the number of significant elements can be correctly decoded from the corrupted index, the sign bits form a

product code in the least significant bits: They will be independent of each other, limiting the effe

errors. Figure 2 shows the classification of pyramid points based on the number of significant eleme

The indices derived through this enumeration have the conditional product code structure. We define a

conditional product code in terms of codewords , , and  when the codewords  and , who

and length may be conditional on the reception of , form a binary product code and the code  has

fixed length , though neither , , nor  need be fixed length individually. The conditi

product code property is extremely useful for high-rate pyramids where  because the sensitive sign

bit information has been extracted and isolated.

Conditional product enumeration requires four quantities, each dependent on the number of sig

elements, . The first quantity is the significant elements term, , which is the number of py

points out of  with  significant elements. The second quantity is the pattern distribution 

, which is the number of patterns that distribute  significant elements over a vector length

The third quantity is the shape term, , which is the number of ways to add  positive integers

value of . The fourth quantity is the sign bits term, , which is the number of ways to assign si

 non-zero integers.

OL i l k, ,( )

N l k i 1––,( ) N l 1– k i 1––,( )+( ) 2⁄

N l k,( ) N l k i–,( ) N l 1 k i–,–( )+( ) 2⁄–





=

for , andi 1≤

for .i 1≥

i k–= k N l k,( )

x

x x1

x x 1[ ] x

IL x l k, ,( )

IL x l k, ,( ) OL x1 l k, ,( ) I+
L

x 1[ ] l, 1– k x1–,( )=

c1 c2 c3 c2 c3

c1 c1c2c3

l1 l2 l3+ + l1 l2 l3

1 l k«<

s R s l k, ,( )

N l k,( ) s

D s l,( ) s l

S s k,( ) s

k B s( )

s
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 can be expressed by the sum of  from  to the maximum number of signif

elements, . This is

. (14)

The term  is the product of the pattern distribution, , the shape, , and the

bits term, , giving

. (15)

The pattern distribution term  is

, (16)

which can be enumerated by the binomial addition identity. This recursive formula states that  

the sum of the possibilities that first element is zero (or not significant) and the possibilities that the firs

element is significant:

. (17)

A unique distribution index  for the pattern of a vector , of length  and with  significant

ments, can be derived from the above recursion. This recursion is based on the first element, , of the ve

tor  and the remaining elements, the vector , as follows:

(18)

with .

The shape term  describes the number of shapes of a vector as

. (19)

It is the number of ways  positive integers sum to , and can be enumerated on the first positive integer

by the upper index summation binomial identity, where the enumeration is based on the value of the

positive integer and the resulting shapes of one fewer dimension, :

. (20)

N l k,( ) R s l k, ,( ) 1

m min l k,( )=

N l k,( ) R s l k, ,( )
s 1=

m

∑=

R s l k, ,( ) D s l,( ) S s k,( )

B s( )

R s l k, ,( ) D s l,( )S s k,( )B s( )=

D s l,( )

D s l,( )
l

s 
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D s l,( ) D s l 1–,( ) D s 1– l 1–,( )+=

ID x s l, ,( ) x l s

x1

x x 1[ ]

ID x s l, ,( )
D s l 1–,( ) ID x 1[ ] s 1– l 1–, ,( )+

ID x 1[ ] s l 1–, ,( )






=

if x1 0≠

if ,x1 0=

ID x 0 l, ,( ) 0=

S s k,( )

S s k,( )
k 1–

s 1– 
 =

s k

s 1–

S s k,( ) S s 1– k i–,( )
i 1=
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There are only  possible values for the first positive integer, since each of the  integers m

greater than zero as well as sum to . For enumeration based on the first significant element, the

sponding offset for the significant element equaling  is determined for  as

, (21)

where the last equality is derived through application of the upper summation binomial identity. The

sponding index into the shape field  is determined as

(22)

with .

The term  is the number of ways to assign signs to  non-zero elements. There is exactly o

bit per significant element; hence, 

. (23)

The simplest way of constructing  is to concatenate the sign bits of each significant element

vector going from the first significant element in the vector to the last. This results in a string exactly

in size. We can express this by the following equation for the index .

(24)

with .

Using the above formulas for , , and , we can reduce equation (14) to

following explicit formula, valid for all positive vector lengths :

. (25)

Since the number of points is unchanged, the codeword index is still  bits long. For ro

ness, the significant elements subranges, , are arranged in reverse order, from  down to

. The offset significant elements subrange of value  is given by

k s 1–( )– s

k

i 1 i k s– 1+≤≤

OS i s k, ,( ) S s 1– k j–,( )
j 1=

i 1–
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s
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s
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2
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∑ 2
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∑= = =
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Once the subrange representing the number of significant elements  is determined, the pattern, sh

sign bits can be enumerated, forming a number ranging from  to . The sign bits are 

as a binary conditional product code in the least significant bits of the codeword, the index of wh

. The shape  is enumerated by the upper index summation formula into 

pattern distribution  is enumerated by the binomial addition formula into . The pro

enumeration index  is the combination of the three other indices

. (27)

To decode the formula for a received product index , we identify the unique  for w

. After subtracting  from , we obtain  a value between

and . The sign bits index  are stored in the least significant  bits, so they may be ob

by right-shifting the index  by  bits. The index now contains values between  

. The pattern index  is the quotient of dividing the index by ; the shape in

 is the remainder of the division.

Both the shape and pattern can be recursively decoded by a similar procedure to magnitude an

enumeration. If division is a problem, the patterns  can be stored premultiplied by .

increases the enumeration table size by a factor of , though that is insignificant compared to the true size

of the PVQ codebook. The information structure of the conditional product code is shown in figure 3

4.3  Conditional Product-Product Enumeration

Conditional product-product enumeration is even more robust than conditional product enume

described in the previous subsection. It is obtained by forcing the shape  term in the enumer

be a conditional product code with respect to the significant elements bit-field. This is done by alloc

total  values – a power of 2 – for the  possible shape assignments. Now the p

shape and sign bits are simply concatenated together, so both the shape and sign bits form a condition

binary product code with respect to the significant elements bit-field. This has a slight advantage i

propagation and hardware decodability, since no division by  is required to obtain the pattern 

, just a right shift by  bits. The equation for the maximum index of a conditio

product-product enumeration of pyramid vectors  can be expressed as

OR s l k, ,( ) R i l k, ,( )
i s 1+=

m

∑=

s

0 R s l k, ,( ) 1–

IB x s,( ) S s k,( ) IS x s k, ,( )

D s l,( ) ID x s l, ,( )

IP x l k, ,( )

IP x l k, ,( ) OR s l k, ,( ) +=

ID x s l, ,( )S s k,( ) IS x s k, ,( )+( )B s( ) IB x s,( )+

Ip s

OR s l k, ,( ) Ip OR s 1 l k, ,–( )<≤ OR s l k, ,( ) Ip Ip′ 0

R s l k, ,( ) 1– Ib s

Ip′ s 0

D s l,( )S s k,( ) 1– Id S s k,( )

Is

D s l,( ) S s k,( )

k

S s k,( )

2
logS s k,( )

S s k,( )

S s k,( )

D s l,( ) log2S s k,( )

P l k,( )
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The new maximum value allowed, , is greater than , adding, on average, half a

the enumeration index. The indexing equation is identical to the conditional product code enumera

the pattern index, , the shape index, , and the sign bits index, , in equa

(18), (22), and (24). However a change is made to the significant elements offset, resulting in

. (29)

Then the conditional product-product enumerated index for a vector , , is given by

. (30)

A breakdown of the index field for a given conditional product-product code is shown in figure 4.

5  Channel Error Analysis
All four enumeration techniques described earlier, magnitude, linear, conditional product, and condition

product-product enumeration have properties of tree structured codes, which improve their error resilience

over a randomly arranged pyramid codebook. Furthermore, the conditional product and cond

product-product enumerations have product code properties. This section examines these error re

properties in detail.

5.1  Random Enumeration Error

The expected squared error  from an index corruption of a randomly arranged codebook is the average

distance between any two vectors.

, (31)

where  are vectors from the randomly arranged PVQ codebook, , and the indices  and 

from  to . Since  has zero mean, equation (31) can be rewritten as

, (32)

NPP l k,( ) D s l,( )2 logS s k,( )
B s( )

s 1=

m

∑=

NPP l k,( ) N l k,( )

ID x s l, ,( ) IS x s k, ,( ) IB x s,( )

ORPP
s l k, ,( ) D s l,( )2 logS s k,( )

B s( )

i s 1+=
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∑=

x IPP x l k, ,( )

IPP x l k, ,( ) ORPP
s l k, ,( ) +=

ID x s l, ,( )2 logS s k,( )
IS x s k, ,( )+( )B s( ) IB x s,( )+

ER

ER
1

N l k,( ) N l k,( ) 1–( )
----------------------------------------------- xi x j– 2

i j≠
∑=

xi P l k,( ) i j

0 N l k,( ) 1– x i

ER
2N l k,( )

N l k,( ) 1–
-------------------------E x

2
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where  is the codebook variance, given by equation (52). For high rates, equation (32) 

approximated by , which is twice the codebook variance. The r

domly enumerated codebook results in a higher channel error than all four systematic PVQ enum

techniques, as we shall shortly see.

5.2  Magnitude and Linear Enumeration Error

Magnitude and linear enumeration are tree structured techniques, with sequential encoding and d

of each vector element. A bit error in the PVQ index may corrupt all the decoded vector elements, b

erally only affects those elements with an enumerative subrange smaller than the value of the flipp

i.e. it only affects the subsequent elements coded past that bit error, much like Huffman (prefix) or Arith-

metic (non-prefix) coding. Hence, the approximate probability of corruption increases linearly from the

first index bit, with the fraction of elements corrupted with a single bit  error in a  bit index as

. (33)

Hence, a randomly selected single bit error, on average, corrupts just half of the elements, rather than all

the elements. This results in a significant robustness advantage of magnitude and linear enumerat

random enumeration. For brevity, we leave more detailed error analysis to [41]; in this subsection, w

present a simplified model of PVQ vector error due to a single bit index error.

We assume that the information about the significant elements is distributed evenly through th

index. The linear and magnitude index model is shown in figure 5 for a vector with six signif

elements, with the major difference between the two in the last two bits of the index, which are usually sign

bits in the magnitude enumeration technique.The error energy induced by a single bit corruption at pos

 in the index is approximately , where  is given by equation (32). As described a

for a large enough vector length and index, a bit error corrupts on average half the elements. This mean

that the linear and magnitude enumeration error energy is approximately half that of the random

enumeration

. (34)

This equation corresponds to the high rate derivations from [41], holding for both magnitude and

enumeration. We should note that the difference between linear enumeration and magnitude enum

only holds for small vector dimensions, primarily due to the different treatment of the least significan

and minor differences in equation (33).

E x
2

l k,[ ]

ER 2E x
2

l k,[ ] 4k
2

l 1+( )⁄≈ ≈

j Nlog

f j N,( ) N j–log( ) Nlog⁄≈

j f j N l k,( ),( )ER ER

EL EM 1 2⁄( )ER 2k≈ 2
l 1+( )⁄≈ ≈
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5.3  Conditional Product and Product-Product Enumeration Error

Conditional product enumeration is designed to place the most important information (in terms of bi-error

corrupting effects) into the first few bits. As described in [40], it is most advantageous to code the

important information first in a tree structured enumerated code because correct reception of code

mation depends on previously coded information being correct.

For conditional product code enumeration, the significant elements are enumerated first, follow

the pattern, followed by the shape, as shown in figure 3. This results in four classes of error: 1) the error in

the number of significant elements  (  field); 2) the error in the pattern (  field); 3) the error in the 

(  field); 4) the error in the sign bits (  field). Each of the four index fields have different e

characteristics. We will go through each field, describing the characteristics of single bit error.

A bit error in the  significant elements field is considered catastrophic, regardless of bit-error

position within the field. The catastrophic error is approximated by the random enumerated cod

error, s

. (35)

The error for the th bit within the  distribution field is given by the fraction  

elements incorrect multiplied by the catastrophic error plus the fraction of elements that turn out 

 multiplied by the shape error, since the shape field follows the distribution field

must therefore also be corrupted if the distribution field is corrupted. For a bit error at position  with

distribution field

, (36)

where  is the expected shape error given the vector  (see equation (58)).

A bit error in the  shape field is also modeled as a tree code. For a bit error at position  with

shape field, this is

 , (37)

where the  is the fraction of corrupted elements.

Finally, any single bit error in the sign  field is given by the sign bit error as

, (38)

where this term is given by equation (59). The distortion induced by a sign bit error is independent

bit position within the field.

Together, equations (35), (36), (37), and (38) form a complete description of the conditional p

s R D

S B

R

2E x
2

l k,[ ]

j D f j D s l,( ),( )

1 f j D s l,( ),( )–( )

j

f j D s l,( ),( )2E x
2

s l k, ,[ ] 1 f j D s l,( ),( )–( )E x xS–
2

s l k, ,[ ]+

E x xS–
2

s l k, ,[ ] x

S j

f j S s k,( ),( )E x xS–
2

s l k, ,[ ]

f j S s k,( ),( )
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E x xB–
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remove “s” my mistake.

bad equation reference, see appendix

bad equation reference, see appendix

bracket instead of paren.
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enumeration error by bit-error position in the index, given  significant elements. As the number of bit

the index grows large, most of the index describes the shape. Thus the high rate error is due to the shape

field error, and since the shape field is a tree-structured code, half the error due to total shape corru

, (39)

using appropriate high rate approximations and equation (56).

From comparing equations (34) and (39), the channel optimization gain of product enumeratio

magnitude or linear enumeration is 3 dB; the gain over random enumeration is 6 dB. This result ho

single bit errors, though clearly it also holds for multiple bit errors so long as the bit errors occur prim

in the shape field of the product-enumerated index.

5.4  Geometric Quantization of Shapes and Volumes

Conditional product enumeration applies to any symmetrically defined codebook that is an even fu

of each vector coordinate. Furthermore, it also applies to volumes defined by a sequence of surf

each surface is indexed by , then all individual  should be sorted in terms of the sign

elements, , and enumerated from the largest  to . Some relevant applications would be Lar

Farvardin’s construction of fixed rate quantizers from scalar quantizers [37] and Boncelet’s work

block arithmetic coding [36].

For an arbitrary distribution, the high rate channel error gain by conditional product enumeration 

magnitude or linear enumeration is the ratio between the variance of the vector element prob

distribution and the variance of the distribution of the absolute value of the vector element. In te

symmetric distributions, let  be a distribution that is strictly non-negative and has zero mass at .

be a random variable taking value of  or  with probability  each. If the source take

distribution of , the gain of product code enumeration is

. (40)

For a Laplacian (pyramidal) source, the gain is 3 dB; for a Gaussian (spherical) source, the gain is 4.3 dB

5.5  Index Overflow Handling

Since PVQ codeword indices are transmitted at a fixed rate, and the number of codewords

necessarily a power of two, some of the larger indices do not correspond to a valid codeword. For e

in the magnitude, linear, and conditional product enumeration, the number of unused indi

s

EP 1 2⁄( )E x xS–
2

l k,[ ] k
2≈ l 1+( )⁄≈

i Ri s l k, ,( )

s s s 1=

X 0 B

1 1– 1 2⁄

BX

Gain 10log10

Var BX( )
Var X( )

---------------------
 
  10log10

E X
2[ ]

Var X( )
-----------------

 
 = =
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 (the conditional product-product enumeration can be handled similarly). Thes

unused indices offer the potential for error detection at the decoder, whereupon corrective methods can

employed when an unused index is received. We investigate three corrective methods for index overflow

here; see section 6.1 for simulations.

1) Zero method: Output the vector of all zeroes. This corresponds to the average value of the pyramid 

vector quantizer codebook. This is a simple technique, but not the best. Depending on the ov

index, the exact bit that flipped can sometimes be detected.

2) MSB method: Flip the most significant bit. For index overflow conditions, the most significant b

will always be set, and flipping the most significant bit always results in a valid index. In most rac-

tical pyramid enumerations, the most significant bit is most likely to be wrong since that is the

likely bit to cause index overflow. In many instances, the most significant bit is the only possib

incorrect bit.

3) Even weight method: Set the output to the average of all possible legitimate vectors obtained b

ping a single set bit to zero in the received index  that will result in a valid code. Clearly, this is th

best solution in a mean-squared-error sense, but it is also the most complicated and hardwar

cient method of the three.

6  Simulations
The simulations on codebook performance are based on the effects of single bit errors on the PVQ

codebook indices because it makes exhaustive testing feasible. For a pyramid codebook , whos

code index is  bits, and whose vector error due to a single bit index error is , we can der

normalized single bit error (per pel) as , which distributes error over the entire v

length, and compensates for different pyramid radii. For overall codebook error, we wish to penalize f

long index lengths, . The expected PVQ error per pel for a unit-radius pyramid, u

transmission of an index through a noisy channel with bit error rate, , is then , as long as

the assumption of low bit error rate and single bit error per index holds. 

6.1  Index Overflow Simulations

In this section, we compare the methods of handling index overflow discussed in section 5.5. We fo

attention on the case where the vector length is  and the codebook radius range is . 

shown in figure 6, the MSB correction method of handling overflows is superior to the ZERO meth

product enumeration (and in general). Since MSB correction is simpler to implement than E

2
logN l k,( )

N l k,( )–

I r

P l k,( )

n Esb

Ensb Esb lk
2( )⁄=

Encb nEnsb=

pberr pberrEncb

l 6= 1 k 18≤ ≤

clarification, my mistake
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correction and generally better than ZERO correction, MSB correction is used in the following simul

to handle all index overflows.

6.2  Indexing Method Simulations

We have simulated the code vector error resulting from an index bit error per position in the index

exactly and by theory for the MSB index overflow correction for the magnitude, linear, and produc

enumeration. The results are shown for  in figure 7. The theoretical bound uses a somewh

sophisticated model than equation (33) (see [41] for more details) that uses longer codeword length

first vector elements than later vector elements; the difference results in enumeration error curves that are

concave rather than perfectly linear (as expected through our simplified model described in this paper), b

this second order effect is not large. The convergence of the theory and simulation curves on the ri

of figure 7 is because we know that the last bit of the magnitude and product enumerated code is a 

with error exactly given by equations (38) and (57). We conclude from figure 7 that the most signif

bits are generally the best bits to protect, followed by the least significant bits, in magnitude and p

enumeration.

Finally, we simulate the various enumeration methods with MSB index overflow correction. The five

methods described are as follows: 1) Random enumeration using equation (32); 2) Fischer’s ma

enumeration; 3) Linear enumeration; 4) Product enumeration; 5) Product-product enumeration.

simulation results over a wide range of radii, , are only available for a smaller dimension, 

because of the extremely large codebooks involved and simulation size constraints. As shown in f

the radial codebook error due to single bit index error by product enumeration is reduced by abou

over the previous enumeration methods, and by 6 dB over a purely random arranged codebook. The

theoretical estimates are useful to estimate the channel error performance of these codebooks when the

codebook size becomes too large for exact simulations.

7  Pyramid Vector Quantization for Images
Pyramid vector quantization has been previously used for DCT [7-14] and subband [15-24] 

compression because both the subband and transformed image data are similar to the Lapl

distribution. PVQ also has been considered in the context of matched joint source-channel coding for

images [7][14][15], where the channel statistics are stationary and known. The following three se

demonstrate the advantages of the new error-resilient PVQ coding schemes introduced here for subba

image compression under varying channel conditions.

P 6 18,( )

1 k 60≤ ≤ l 4=
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The pyramid vector quantizer, by itself, assigns points to the nearest codeword on a single pyrami

shell. For image compression applications where the vector lengths are small, the pyramid vector q

is typically matched with a radial quantizer to form several concentric pyramid shells [1]. This is c

polar or product quantization, where the radius is quantized independently from the position on the

We describe this method as polar quantization, in order to avoid confusion with the enumerative technique.

Polar pyramid vector quantization utilizes four steps to code an input vector into digital bits. Th

step is to find the nearest pyramid shell to the input vector. The second step is to scale the point 

cubic lattice. The third step is to round the point to the nearest point in the cubic lattice that is on the

pyramid shell. The fourth step is to enumerate that cubic lattice point, a process which assigns a

index to each point on the pyramid shell. These steps are shown in figure 9. 

In exhaustively examining the radial versus shell quantizer bit allocations, we have found tha

radial position index should be allocated about as many bits as the typical sample element in the

This means an overall quantizer resolution of 7 bits per sample element implies that the radial qu

resolution should be 7 bits. For very large vectors, the radial position index takes up a diminishing f

of the overall bits; this can be attributed to the asymptotic equipartition principle – for very large ve

most of the points cluster uniformly on very few shells.

8  Fixed rate PVQ subband coding
The subband filter experiments use a 9 tap quadrature mirror filter (QMF) with coefficients from the 

tap of (0.5645751 0.2927051 -0.05224239 -0.04270508 0.01995484) [29]. This filter was chosen

good overall performance, for its equal energy normalization into different frequency bands, and for it

reasonable length. The filter is recursively applied to the input image, breaking it into four leve

subband decomposition as shown in figure 10 [29][30]. Our four level subband decomposition result

frequency bands, rather than 13 for a logarithmic decomposition or 512 for a full four level decompo

This offers a good tradeoff between performance, computational overhead, and side information 

subband variances.

After the subband decomposition, each frequency band is coded using a fixed rate quantizer. T

lowest frequency band (DC band) is quantized with a Gaussian Lloyd-Max scalar quantizer. The

bands are first scrambled into a random order to break up any correlation and then quantized with a 

PVQ quantizer. The polar PVQ quantizers consists of a scaled Erlang radial quantizer, where the sc

determined to best fit generalized Gaussian  data. This is combined with the PVQ shell qua

to obtain the best radial/shell bit allocations that lie on the distortion-rate convex hull. The bit allocati

the polar PVQ quantizer is determined through integer bit-allocation techniques [38][39] 

γ 0.6=

remove orthonormal
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experimentally obtained distortion per bit figures.

As shown in figure 11, on the USC database images Lena, Couple, LAX, and Mandril

performance of the PVQ algorithm exceeds that of JPEG with scaled suggested quantization matrix

custom Huffman tables.

9  Channel robustness
For our channel robustness experiments, we use a simple channel model. The encoder always tran

same compressed image regardless of the actual channel because it does not know how many rec

listening or the channel noise characteristics at each receiver. The receivers, on the other han

knowledge of its own individual channel noise conditions – both the average bit error rate and the p

of total signal loss in a deep fade. This model conveys some of the problems associated with 

communication [32][33].

In our PVQ experiments, we only protect the scalar quantized DC band by repeating the two

significant bits of each index 3 times. This incurs negligible overhead – about 0.016 bpp, and requi

a simple majority decoder to correct bit errors in the DC band. All other bands are PVQ encoded and a

not protected to show the inherent error resilience offered by the new product enumeration technique.

The difference in performance between product enumeration and magnitude enumeration on 

0.5 bpp and LAX at 0.75 bpp is shown Figure 12. The high rate, low frequency bands experien

greatest benefit – about 3 dB, translating to an overall image gain of up to 1.5 dB over a wide rang

error rates.

 For comparison, we use the JPEG coder with resynchronization at every 6 macroblocks (JP

and the JPEG coder with resynchronization and (2,1,6) Viterbi decoding [34][35] (JPEG-R (2,1,6

These JPEG implementations are compared with the product enumerated PVQ technique in figure 13 

Lena at 0.5 bpp. Clearly PVQ offers both better intrinsic coding performance and additional

resilience. Only with sophisticated channel coding can the performance of JPEG be made error resilient,

but that significantly reduces the noiseless source coding performance.

A direct comparison of the product enumerated and magnitude enumerated PVQ for the Le

LAX images are shown in figures 14 through 17. The images show a significant advantage of p

enumeration over magnitude enumeration in the reduction of large artifacts in the decoded PVQ image.

10  Conclusion
Pyramid vector quantization is a form of vector quantization that does not require large codebook 

and that has very simple systematic encoding and decoding algorithms. In this paper, we have intro
18
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new method of PVQ enumeration called product enumeration, which reduces the susceptibility to c

noise by up to 3dB over existing methods for no additional coding overhead. These new p

enumeration techniques have efficient hardware variants and can be applied to other fixed-rate symmetric

quantizers as well. We have also shown effective index overflow strategies that handle detectable err

when the received index is outside the set of possible indices, a common problem with fixe

enumerated codes. 

These new error resilient PVQ techniques, when combined with subband coding, achieves

compression performance than the variable rate JPEG image compression standard, and with muc

robustness as well. In fact, over wide ranges of varying channel noise, the error resilient PVQ techniques

can improve both mean squared error and visual fidelity over previous techniques and channe

JPEG, and can sustain image quality under the presence of one percent channel error, without channel

coding of the PVQ data.
19
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Appendix A  Nineteen Important Enumerative Formulas
The fundamental pyramid structure equations relate intimately to the number of points  

pyramid codebook . In this chart,  represents the vector length,  represents the rad

represents the magnitude of a significant element, and  represents the number of significant el

Full details on their derivation and other asymptotic properties are described in [41].
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vector length recursion [14]

vector radius recursion [14]

enumeration formula by products

enumeration formula by convolutions

volume summation formula

magnitude of significant element for known s

energy of significant element for known s

codebook energy for known s

codebook energy

magnitude of significant element, n

energy of significant element, n

number of significant elements, s

error energy for sign error

approximate error energy for shape error

asymptotic sandwich for k large

asymptotic sandwich for l large

approximate error energy for shape error for known s

error energy for sign error for known s
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