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Abstract-Pyramid vector quantization (PVQ) uses the lattice points of a pyramidal shape
in multidimensional space as the quantizer codebook. It is a fixed-rate quantization tech-
nique that can be used for the compression of Laplacian-like sources arising from trans-
form and subband image coding, where its performance approaches the apl entropy-
coded scalar quantzer without the necessity of variable length codes. In this paper, we
investigate the use of PVQ for compressediage transmission over noisy channels, where
the fixed-rate quantization reduces the susceptibility to bit-error corruption. We propose
a new method of deriving the indices of the lattice points of the multidimensional pyramid
and describe how these techniques can also improve the channel noise immunity of gen-
eral symmetric lattice quantizers. Our new indexing scheme improves channel robustness
by up to 3 dB over previous indexing methods, and can be performed with similar compu-
tational cost. The final fixed-rate coding algorithm surpasses the performance of typical
Joint Photographic Experts Group (JPEG) implementations and exhibits much greater

error resilience.

1 Pyramid Vector Quantization

Pyramid vector quantization (PVQ) was introduced by Fischer [1][2] as a fast and efficient method of
quantizing Laplacian-like data, such as generated by transforms or subband fi{élsif3an image
compression system. PVQ has very simple systematic encoding and decoding algorithms and does not
require significant codebook storage. It combines the robustness ofditeedodesvith the performance

of entropy-coded scalar quantization. Considerable research in PVQ algorithms has culminated in high
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performance, error resilient PVQ image compi@ssystems for both transforms]{14] and subband
decompositions [1524]. PVQ has also been implemented in hardware [18]-[20], taking advantage of a
computationally constructed codebook instead of a stored codebook to build a robust, low power, video-
rate PVQ decoder.

In this paper, we propose new ways of assigning indices to the points in the PVQ codebook that
improves channel robustness by up to 3 dB over previous enumerations, and up to 6 dB over a randomly
enumerated codebook. These new indexing techniques require roughly the same encoding and decoding
hardware complexity as previous enumerations and can be applied to any of the fixed rate PVQ coding
systems described previously in thefdégture. We discuss the theoretical and simulated advantage of new
techniques through channel noise models of the PVQ indices and codebooks. Finally, we show the

practical advantages of PVQ by demonstrating an error-resilient PVQ system that exceeds the performance

of Joint Photographic Experts Group (JPEG) implementations, both with and without channel error.

add extra word to make “JPEG” make sense

2 A Brief Overview of Pyramid Vector Quantization
Pyramid vector quantization takes its name from the geometric shape of the points in its codebook. It is
designed for Laplacian random variables, whose equiprobable contours form multidimensional pyramids.

This can be seen from the multidimensional Laplacian probability density:

—Ai\xi\
f(x) = (\/2) e =t | (1)

wherex is a vector of length . The surfaces of equal profyaisidefined in an  dimension space where

thel; norm ofx is a constant, , representing the radius of tfeceu

|
Z ‘xi‘ =r. 2
i=1
The surface given by a fixdd  constraint on the coordinates, equation (2), is called a pyramid. In the

literature, thd; surface is often referred tooblyer names: dipyramid or bipyramid, by the shape in three
dimensions; generalized octahedron, from the corresponding Platonic solid; cross polytope because of the
vertex locations; and co-cube, since it is the polyhedral dual of the cube structure upon exchange of vertex
locations andace normals[25][26][27].

The radial distribution for can be obtained from the convolution of exponential distributions; it is

an Erlang distribution,
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The PVQ codebookP(l, k) , consists of the set of integer vectors of length  whose absolute values

fr(r) = ()

sum tok : P(l,k) = EP(:Xi 0z a”dZ‘Xi‘ = k% , as shown in figure 1 in two and three dimensions. It can
be obtained by inters%cting the pyramidfaugof integer miusr = k , described by equation (2), with the
cubic lattice, resulting in a regular distribution of codebook points on the pyramiatesuThe PVQ
codebook,P(l, k) , is typically scaled to fit the desired pyramid contour. For very large vector dimensions,

I, PVQ has asymptotic properties: by the Central Limit Theorem, the radial distrilfgion approaches

that of a Gaussian; by the Asymptotic Equipartition Theorem [1], the vector  clusters uniformly on the

pyl’amld Of I‘adIUS’ = I/)\ . missing in text
This section has covered the geometric structure of the PVQ codebook. The following two sections
describe the enumeration of the pyramid codeb&gk k) — the method which assigns a transmittable

index to each PVQ codebook vector.

3 Magnitude PVQ Enumeration

Fischer introduced the first PVQ enumeration technique [1] that showed the feasibility of assigning unique
indices to the pyramid codebook by computation. We sledéirrto Fischer's oginal technique as
magnitude enumeration in this paper, for reasons that will later become clear. Magnitude enumeration
serves as an excellent starting point to introduce PVQ enumeration, so we devote some time to its
description in this section, showing some simplifications to the existing enumeration equations. In later
sections, we will use the same terminology to introduce and develop our own enumeration techniques.

Enumeration assigns a unigue index to all possible vectors in the PVQ codéljgd&), , Iimparting a

sorting order to the PVQ codebook vectors. For example, magnitude enumeration sorts each vector based

on themagnitudeof each of its elements. The first two vectors in the codeli@dkk) begir with
zeroes: index O corresponds to the vecid, O, ..., k) and index 1 corresponds to the vector
(0,0, ..., —K) . Systematic sorting for enumeration is done through counting formulas for the number of

vectors in the pyramid; this is a common concept to all pyramid entivest@dniques.
The number of vectors in the pyramid codebde, k) is denotei (hyk) . This is related to the

binary codeword index length, which ﬁdogzN(I, k)} bits(l, k) can be viewed as the number of ways
) ceiling, not floor operatar ] S
| integer values in a vector can haveanmabsotute—sitkn of . Of Mgsk) possible combinations, only

N(I-1,k—1i|]) of them result in the value as the first elementi(for an integer betkeen k and ), by
the definition of N(I, k) . HenceN(l,k) is the sum of the number of ways of obtaining a pyramid

codebook vector starting with , for every possible valuie of . This is written as
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k
N(LK) = 5 N(I=1 ki), (4)

i =k
where the boundary conditions aN{l,0) = 1 for all intelger , {6, k) = 0 for integ&y LA

recursive application of equation (4) will obtain a value for &y, k)

Equation (4) has a geometric interpretation: If one of the dimensions is fixed for a pyramid in
dimensionl , then the resulting shape is a pyramid in dimehsidn . This is shown graphically in figure 1
by fixing thex; dimension for the pyramid in three dimensions to obtain a pyramid in two dimensions.

Equation (4) has a lexicographic interpretation: Just like the subranges of Webster's dictionary are
ordered in terms of each letter from ‘a’ to ‘z’, thebranges in magnitude eneration are ordered in terms

missing “1”
of themagnitudeof each vector element, , by the following sequelﬁig—l 2,-2 ...,k -k . Suppose

x is a vector of length x = (X;,X,, ..., %) ,inthe pyramid codebd®i, k) . Based on the first vector
element, x; , the integer range from 0 (I, k) -1 can be subdivided into subranges of size

N(I-1,k—[i|) fori betweenk td , using equation (4). If the first element is 3 , for example,

then the subrange consists of thel remaining vector elements with an absoluteksug of , and has
size N(I-1,k=3) . an “I' not 4"

Using the subrange sizes and their order, it is possible to calculate the offset of each subrange from

zero in magnitude enumeration. The magnitude enumeration index offset of the subrange consisting of
vectors with first elemert; = i in the codebo&K|, k) is denote®ggi, |, k) . This is calculated
from the two first subranges representing = 0 and=1  Qu(0,1,k) =0 and
Op(L,1,k) = N(I-1,k) , as

i—1
BN(I—l,k)+ZZN(I—1,k—j) fori>2, and
. O =
Op(i,ILk) = O j
M ] |
B Oy (il 1,k) + N(I1 -1, k—1il) fori<o. -

The offset for positiva , in equation (5), is calculated by adding all subranges with a smaller magnitude.
The offset for negativé , isist the sum of the offset for ptise i, O,(li|,1,k) , and thesubrange for
positivei ,N(I =1, k—i|) . Although equation (5) follows the original definitigigen in [1], it is not the
simplest definition. With manipulations, either through massaging equation (4), or through application of

the volume summation formula, equation (48), it is easy to see that



IEEE Transactions on Image Processing

N(I, k) =N(l, k—i) =N(I-=1,k—i) fori>0, and

0
On(i,1k) = O (6)
O N(I, k) =N(I, k=1i) fori<O.

|

The magnitude PVQ index of a vector is obtained from summing the offsets of nested subranges,
and is recursively defined from equation (6). Each recursive step removes another element from the vector
X. Letx; be the first element of the vector ;Jkrﬁ] denote the subvector of the xector excluding the

first element. Then the magnitude enumerated inlggi, |, k) is recursively defined as

(X 1K) = OM(xl,I,k)+IM(x[1],I—1,k—‘xl‘) , @)
where the “empty” vector of no elements has an intjg& )} 0,(0) = O . For example, suppose the input
my mistake, typo, should be 0
vector of (1, 0,—1) is to be enumerated on the pyramid codebB( 2) . Recursive application of

equation (7) yields

Iy((1,0,-2),3,2) = Oy(L, 3 2 +1y,((0,-1),2, 1)

Op(L, 3,2 + 0 (0, 2 1) +1,((-1), 1, 1)

= Opy(L,3 2+0,(0,2 1) +0y,(-1,1,1) . (8)
The decoding proceeds as follows. Given a received magnitude enumerated index, , in the pyramid
codebook, P(l,k) , the first vector elemerjf is determined from the unique subrange for which

Op(Xq, LK) <1, <Oz (X, 1K) + N(1 =1, k- ‘xl‘) . Once the first element is decoded, the offset of the
subrange is subtracted from the original index, resulting in a number ranging @rom to
N(I-1, k—‘xl‘)—l . The remaining elements now form a vector of ledgti with absolute sum of
k—‘xl‘. This is recursively decoded by the same procedure as before, except the new index is
'y = 1= Om(Xq, 1K), corresponding to the vector df-1 elements in the pyramid codebook
P(I—1,k—‘xl‘) .
Fischer [1] derives a fast method to calcul&él, k) . From equation (4), the relationship between

N(l, k) =N(I, k—1) can be simply expressed as

N(Il, k) =N(l, k=1) = N(I-21,K) + N(I -1, k—-1) . 9)
This can be rearranged into

N(l, k) = N(I, k=1) +N(I1-1,k) + N(I-1,k-1) . (20)
Since magnitude enumeration converts between pyramid codebook vectors and indices by formulas
involving various combinations oN(l, k) , the pyramid codebook need not be stored. This means PVQ

codebooks can be very large, easily having betwz¥n 2128 entries. For maximum efficiency, the
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values N(I, k) are usually precomputed, resulting in a table oflkize , logarithmic in codebook size.

Alternate methods of derivind(l, k)  are described in Appendix A.

4 Robust Enumeration of the Multidimensional Pyramid

Error resilience can be achieved through permutation of the PVQ codebook indices to minimize the effect
of bit-errors on the indices. In general, close Hamming neighbors in the codebook indices should
correspond to close spatial neighbors on the pyramid. Since PVQ codebooks arefast@llyarge to

have such a permutation map stored in memory, we investigate new enumeration methods that
automatically yield robust indices in this section. The original approachmeasitude enumeration
discussed in section 3. The second approach, which wenesl enumerationis a variant on Fischer’s
magnitude enumeration and was originally used in a slightigrdiit form by Swaszek [28]. Thieird and

fourth approaches that we develop here use conditional product codes; they @editienal product

code enumeratiomnd conditional product-product code enumeratitethniques, and both have a 3 dB

advantage over the magnitude and linear enumerations under random bit errors.

4.1 Linear Enumeration

Linear enumeration relies on constructing a bettee structure than the matude enuneration. As
described before, magnitude enumeration divides the subranges by the magnitude of the each vector
element, in the orded, 1,-1, 2,-2 ..., k,—k . Adjoining subranges which are close in the indexing sense
(and Hamming sense) can @ in a spatial sensd.inear enumeration improves the indexing by
reordering the subranges in a linear fashiorlgs-k+ 1, ...,-1,0, 1, ..., k=1, k , SO adjoining subranges
correspond to consecutive values.

The subranges oN(l,k) in linear enumeratame ordered by value of the first vector element
X, = i, rather than the magnitude of the first element, as in magnitude enumeration. The offset of

subrange of the first element of vector  for linear enumeration is denotegd(as, k) and is defined

for -k < i< k by the following equation:

i—1
i=—k
and byO, (i,1,k) = 0 fori = —k . Through application of the volume summation formula, equation (48),

the above equation can be simplified to
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0 (N(L,k=]i=1]) +N(I-1,k-[i-1]))/2  fori<1,and
) d
BN(I,k)—(N(I,k—i)+N(|—1,k_i))/2 fori=1.
In equation (12), enumeration for= —k requires a negdtive indeM(ink) . which should be treated

as zero.

The PVQ index of a vectox  can becusively defined similarly to that of magude and linear
enumeration. Each recursive step removes the first element from thewectox, . Let  be the first element of
the vectorx ; letx;;; denote the subvector of the vegtor  excluding the first element. Then the index

[ (x,1,K) is recursively defined as

(X 1,k) = OL(xl,I,k)+IL(x[1],I—1,k—‘xl‘) : (13)

4.2 Conditional Product Code Enumeration

Unlike linear and magnitude enumerations, which divide the subranges by the value of the vector elements,
conditional product code enumeration forms subranges based on the numbezefan@rsignifican)
elements in the vector. Since each significant element is symmetric in distribution, each has a
corresponding sign bit. These sign bits can be packed into the least significant bits of the index. As long as
the number of significant elements can beecdly decoded from the corruptediex, the sign bits form a
product code in the least significant bits: They will be independent of each other, limiting the effects of
errors. Figure 2 shows the classification of pyramid points based on the number of significant elements.

The indices derived through this enumeration haveomelitional product codstructure. We define a
conditional product code in terms of codewoegsc, , ,@nd  when the codewyordsc, and , whose size
and length may be conditional on the reception,of , form a binary producanddee codec,c,c; has
fixed lengthl; +1, +15, though neithdy 1, , nby need be fixed length individually. The conditional
product code property is extremely useful for higte pyramids whergé <l «k  because thes#em sign
bit information has been extracted and isolated.

Conditional product enumeration requires four quantities, each dependent on the number of significant
elementss . The first quantity is the significant elements té&t(s, | k) , Which is the number of pyramid
points out of N(I, k) withs significant elements. The second quantity is the pattern distribution term,
D(s, I) , which is the number of patterns that distribate significant elements over a vector lehgth of
The third quantity is the shape ter®s K , which is the number of ways ® add positive integers to the
value ofk . The fourth quantity is the sign bits terB{,s) , Which is the number of ways to assign signs to

S non-zero integers.
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N(l, k) can be expressed by the sumRfs | k) fr to the maximum number of significant
elements,m = min(l,k) . Thisis missing from text
m
N(LK) = S R(s LK. (14)
s=1
The termR(s | K) is the product of the pattern distributidx(s, 1) , the shaps,k , and the sign

bits term, B(s) , giving

R(s | B = D(s )S(s BB(s) . (15)
The pattern distribution termd(s, 1) | is
clarification. d
D(s, I) = B0 1
(s =5q (16)
which can be enumerated by thimomial additionidentity. This recursive formula states tha{s, I) is

the sum of the possibilities that first elementéso (or nofsignificant) and the possibilities that the first

element is significant:

D(s,I) = D(s, 1-1)+D(s-1,1-1) . 17)
A unique distribution index (X, s, )  for the pattern of a vector , of letigth andswith  significant ele-
ments, can be derived from the above recursion. fEisrson is based on the first elemerf, , of the vec-

tor x and the remaining elements, the VE(XIHIj , as follows:

D(s, 1-1) +Ip(xpyy, 8=1,1-1) if x;#0

O
O

Ip(xs 1) = O _ (18)
0 ID(x[l],s, I-1) if x;=0,

|

with ID(X, 0,1)=0. remove “for any x”, my mistake.

AN

The shape tern§(s B describes the number of shapes of a vector as

-1
S(s K = g_lg. (19)

It is the number of ways positive integers sunkto , and can be enumerated on the fivstipteger

by theupper index summatidmnomial identity, where the enumeration is based on the value of the first

positive integer and the resulting shapes of one fewer dimerssiah,

k—(s—1)
S(s B = Z S(s-1,k-1i) . (20)

i=1
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There are onlyk—(s—1) possible values for the first positive integer, since eachsof the integers must be
greaterthan zero as well as sum o . For enumeration based on the first significant element, the corre-

sponding offset for the significant element equaling is determineti€dr<k —s+ 1 as

lij—1
Og(i,s, k) = ZS(S—l,k—j)=S(s R-—S(s k=|i+1) |, (21)
j=1
where the last equality is derived through application of the upper summation binomial identity. The corre-

sponding index into the shape field(x, s, k) is determined as

B S(X[l]’s_l’k_‘xl‘) if X, 20
ls(x,s, K = [ _ (22)
B Is(X[17: S K ifx; =0,
with Ig(X, s, 9 = 0. replace with this, my mistake.

ThetermB(S) IS the number of ways to assign sigrss to  non-zero elements. There is exactly one sign

bit per significant element; hence,

B(s) = 2°. (23)
The simplest way of constructing(s) is to concatenate the sign bits of each significant element of the
vector going from the first significant element in the vector to the last. This results in a string sxactly  bits

in size. We can express this by the following equation for the ihgéx; s)

BZS_1+|B(X[1],S—1) If X, <0
lg(x, s) = E Ig(X[17: ) ifx; =0 (24)
3 lglxgps-1) x>0
with 15(x,0) = 0.
Using the above formulas fob(s,1) $(s K , anB(s) , we can reduce equation (14) to the

following explicit formula, valid for all positive vector lengths 0

m m
N(LK) = $ R(s LR = 5 D(s )S(s BB(9) = szﬂ : (25)
s=1 s=1 S=
Since the number of points is unchanged, the codeword index |§I9@I§N(I, k)} bits long. For robust-
ness, the significant elements subrandgegs |, K) , are arrangedense orderfrom s = m down to

s = 1. The offset significant elements subrange of value is given by
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m

Og(s LK) = 5 R(,1LK) . (26)

i=s+1
Once the subrange representing the number of significant elements is determined, the pattern, shape, and
sign bits can be enumerated, forming a number ranging romR(# 1| k) —1 . The sign bits are stored
as a binary conditional product code in the least significant bits of the codeword, the index of which is
Ig(x,s). The shapeS(s K is enumerated by the upper index summation formulbg(mics, K) . The
pattern distributionD(s, I) is enumerated by the binomial addition formulalig(a, s, 1) . The product

enumeration indexp(x, I,k)  is the combination of the three other indices

Ip(X, 1,k) = Og(s, I, k) +
(Ip(x, s NS(s B+14(x, s K)B(S) +1g(%,8) . 27)

To decode the formula for a received product indgx , we identify the ursque  for which
Og(s I, k) < Ip< Og(s—1,1,k) . After subtractingOg(s, |, k) fronhp , we obtalta’ a value betwBen
and R(s | K—1 . The sign bits inddy, ~ are stored in the least signifecant  bits, so they may be obtained
by right-shifting the indexlp’ bys bits. The index now contains values betw&en and
D(s )S(s B—1 . The pattern indek; is the quotient of dividing the index3f% K ; the shape index
I is the remainder of the division.

Both the shape and pattern can be recursively decoded by a similar procedure to magnitude and linear
enumeration. If division is a problem, the patteidés, I) can be stored premultipliS@sby . This
increases the enumeration table size byctor ofk , though that is insignificant coamed to the true size

of the PVQ codebook. The information structure of the conditional product code is shown in figure 3.

4.3 Conditional Product-Product Enumeration

Conditional product-product enumeration is even more robust than conditional product enumeration
described in the previous subsection. It is obtained by forcing the S{ap® term in the enumeration to
be a conditional product code with respect to the significant elements bit-field. This is done by allocating a

total ZFIOQS(S R

values — a power of 2 — for tH& s K possible shape assignments. Now the pattern,
shape and sign bits are simply concatenated togethbntsdhe shape and sign bits form a conditional
binary product code with respect to the significant elements bit-field. This has a slight advantage in error
propagatiorand hardware decodability, since no division Bfs K is required to obtain the pattern field
D(s, 1), just a right shift by ﬂogZS(s kﬂ bits. The equation for the maximum index of a conditional

product-product enumeration of pyramid vect®d, k) can be expressed as

10
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Nep(1K) = 3 D(s )2 19SS Blg(g) 28)

s=1
The new maximum value allowedl; ;(I,k) , is greater th, k) , adding, on average, half a bit to

the enumeration index. The indexing equation is identical to the conditional product code enumeration for
the pattern index|y(x, s, 1) , the shape indéx(x, s, K , and the sign bits ingex, s) , in equations

(18), (22), and (24). However a change is made to the significant elements offset, resulting in

m
|
O, (51K = Y Dis )2!1095(s Blg(g) (29)
i=s+1
Then the conditional product-product enumerated index for a viectiyyp(X, 1, k) , is given by

lpp(X, 1, k) = ORPP(s l, k) +
(506 s D29 BTy (x5 K)B(Y +1g(x ) (30)

A breakdown of the index field for a given conditional product-product code is shown in figure 4.

5 Channel Error Analysis

All four enumeration techniques describestlier, magnitude, linear, conditional product, and conditional
product-product enumeration have properties of tree structured codes, which improggdheésilience

over a randomly arranged pyramid codebook. Furthermore, the conditional product and conditional
product-product enumerations have product code properties. This section examines these error resilience

properties in detail.

5.1 Random Enumeration Error

The expected squaredror E; from anindex corruption of a randomiyrranged cod®ok is the average

distance between any two vectors.

= xjHZ , (31)

_ 1
~ON(, k)(N(I,k)—l)_ZHXi_

i %]
wherex; are vectors from the randomly arranged PVQ codel®dkk) , and the indicejs and range

from 0 to N(I,k) -1 . Sincex; has zero mean, equation (31) can be rewritten as

En = 2NUKErg2)) g (32)

“ON(L k) -1

11
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where E[||x||2 I,k] isthe codebook variance, given by equation (52). For high rates, equation (32) can be

[, K] =4k2/(l +1) , which is twice the codebook variance. The ran-

approximated by ER=2E[||x||2
domly enumerated codebook results in a higher channel error than all four systematic PVQ enumeration

techniques, as we shall shortly see.

5.2 Magnitude and Linear Enumeration Error

Magnitude and linear enumeration are tree structured techniques, with sequential encoding and decoding
of each vector element. A bit error in the PVQ index may corrupt all the decoded vector elements, but gen-
erally only affects those elements with an enumerative subrange smaller than the value of the flipped bit;
i.e. it only affects the subsequent elements coded past that bit error, muchffikam(prefix) or Aith-

metic (non-pefix) coding. Hence, the approximate prolb#piof corruption increases linearly from the

first index bit, with the fraction of elements corrupted with a singl¢ bit errotagid bit index as

f(j,N) = (logN—j)/logN . (33)
Hence, a randomly selected single bit error, on average, corruptaitief the elements, rather thai
the elements. This results in a significant robustness advantage of magnitude and linear enumeration over
random enumeration. For brevity, we leave more detailed error analysis to [41]; in this subsection, we shall
present a simplified model of PVQ vector error due to a single bit index error.

We assume that the information about the significant elements is distributed evenly through the PVQ
index. The linear and magnitude index model is shown in figure 5 for a vector with six significant
elements, with the majorfterence between the two in the last two bits ofititex, whichare usually sign
bits in the magnitude enweration technique.The error energy induced by a single bit corruption at position
j inthe index is approximately(j, N(l,k))Eg; ~, whekg, s given by equation (32). As described above,
for a large enough vector length and index, a bit error corruptseyages half the elements. This means
that the linear and magnitude enumeratemor energy is appkimately half that of the random

enumeration

E ~Ey=(1/2Eq=2K/(1 +1) . (34)
This equation corresponds to the high rate derivations from [41], holding for both magnitude and linear
enumeration. We should note that the difference between linear enumeration and magnitude enumeration
only holds for small vector dimensions, primarily due to the different treatment of the least significant bits

and minor differences in equation (33).

12
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5.3 Conditional Product and Product-Product Enumeration Error

Conditional product enumeration is designed to place the most important information (in terres@rbit
corrupting effects) into the first few bits. As described in [40], it is most advantageous to code the most
important information first in a tree structured enumerated code because correct reception of coded infor-
mation depends on previously coded information being correct.

For conditional product code enumeration, the significant elements are enumerated first, followed by
the pattern, followed by the shape, as shown in figure 3. This results in four classes of erratrby the
the number of significant elemerds R( field); 2) the error in the pattern (  field); 3) the error in the shape
(S field); 4) the error in the sign bitsB( field). Each of the four index fields have different error
characteristics. We will go through each field, describing tlaeaceristics osingle bit error.

A bit error in theR significant elements field is considered catastrophic, regardlesseofobit
position within the field. The catastrophic error is approximated by the random enumerated codebook

error, s remove “s” my mistake.

2E[[Ix[J1 KT (35)

The error for thej th bit within th®  distribution field is given by the fractifip, D (s, I)) of
elements incorrect multiplied by the catastrophic error plus the fraction of elements that turn out correct
(1-1(j,D(s,1))) multiplied by the shape error, since the shape field follows the distribution field and
must therefore also be corrupted if the distribution field is corrupted. For a bit error at pjpsition  within the

distribution field

£, D(s, ) 2E[IIXI?]s, 1, K] + (L= (], D(s, I)))E[Hx—xg‘z s Lk, (36)

where E[ Hx - xg‘z

s, |, k] is the expected shape error given the vactor (seelequatign (58)).
bad equation ference, see appdix
A bit error in theS shape field is also modeled as a tree code. For a bit error at gosition within the

shape field, this is bracket instead of paren.

(G, S(s RE[|x —xg*

where the f(j, S(s K) is the fraction of corrupted elements.

s, I,k , (37)

Finally, any single bit error in the sigh  field is given by the sign bit error as

E[HX—XBHZ‘S LK (38)

where this term is given by equa{ion (59). The distortion induced by a sign bit error is independent of the
bad equation ference, see appdix

bit position within the field.

Together, equations (35), (36), (37), and (38) form a complete description of the conditional product

13
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enumeratiorerror by bit-erromposition in the index, givea significant elements. As the number of bits in
the index grows large, most of the index describes the shape. Thus the higinorate due to the shape

field error, and since the shape field is a tree-structured code, half the error due to total shape corruption:

Ep=(1/2)E[|x-xd°|LLKI=k/(1+1) , (39)

using appropriate high rate approximations and equation (56).

From comparing equations (34) and (39), the channel optimization gain of product enumeration over
magnitude or linear enumeration is 3 dB; the gain over random enumeration is 6 dB. This result holds for
single biterrors,though clearly it also holds for multiple bit errors so long as the bit errors occur primarily

in the shape field of the product-enumerated index.

5.4 Geometric Quantization of Shapes and Volumes

Conditional product enumeration applies to any symmetrically defined codebook that is an even function
of each vector coordinate. Furthermore, it also applies to volumes defined by a sequence of surfaces. If
each surface is indexed by , then all individéa(s, I, k) should be sorted in terms of the significant
elementss , and enumerated from the largest s #01 . Some relevant applications would be Laroia and
Farvadin's construction of fixed rate quantizers from scalar quantizers [37] and Boncelet's work with
block arithmetic coding [36].

For an arbitrary distribign, the high rate channel error gain by conditional product enumeration over
magnitude or linear enumeration is the ratio between the variance of the vector element probability
distribution and the variance of the distribution of the absolute value of the vector element. In terms of
symmetric distributions, IeX be a distribution that is strictly non-negative and has zero ass & . Let

be a random variable taking value df el with probabillixr2 each. If the source takes the

distribution ofBX , the gain of product code enumeration is

2
o DVargBX)D_ E[ X 0
Gain = 1OIOQLODVar(X) 0= 10|0910[Var(X)D . (40)

For a Laplacian (pyramidal) source, the gain is 3 dB; for esS§dan (spherical) source, the gain is 4.3 dB.

5.5 Index Overflow Handling

Since PVQ codeword indices are transmitted at a fixed rate, and the number of codewords is not
necessarily a power of two, some of the larger indices do not correspond to a valid codeword. For example,

in the magnitude, linear, and conditional product enumeration, the number of unused indices is

14
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ZrlogN(l’kﬂ—N(l, k) (the conditional product-product enamtion can be handled similarly). These

unused indices offer the potential fenror detectionat the decoder, whereupon corrective methods can be
employed when an unused index is received. We investigade tlorrective nt@ods for index osrflow

here; see section 6.1 for simulations.

1) Zero method: Output the vector of all zeroes. This corresponds to ¢nagevvalue of the pyramid
vector quantizer codebook. This is a simple technique, but not the best. Depending on the overflow
index, the exact bit that flipped can sometimes be detected.

2) MSB method: Flip the most significant bit. For index overflow conditions, the most significant bit
will always be set, and flipping the most significant bit always results in a valid index. In raost p
tical pyramid enumerations, the most significant bit is most likely to be wrong since that is the most
likely bit to cause index overflow. In many instances, the most significant bit is the only possible
incorrect bit.

3) Evenweight method: Set the output to the average of all possible legitimate vectors obtained by flip-
ping a single set bit twero in the receivemhdex |, that will result in a valid code. Clearly, this is the
best solution in a mean-squared-error sense, but it is also the most complicated and hardware ineffi-
cient method of the three.

6 Simulations

The simulations on codebook performarame based on the effects ohgle bit errors on the PVQ
codebook indices because it makes extiaisesing feasible. For a pyramid codebod¥(l, k) , whose
code index isn  bits, and whose vector error due to a single bit index ey, is , wWe can derive the
normalized single bit error (per pel) &, = Esb/(lkz) , which distributes error over the entire vector
length, and compensates for different pyramidiird-or overall codebook error, we wish to penalize for

long index lengthsE = nE,,, - The expected PVQ error per pel for a unit-radius pyramid, under

nchb —

transmission of an index through a noisy channel witletdr rate,p,q . is them,,E_ =, dsng as

cb

the assumption| of low bit error rate(and single bit error per index holds.

clarification, my mistake
6.1 Index Overflow Simulations
In this section, we compare the methods of handling index overflow discussed in section 5.5. We focus our
attention on the case wfte the vector legth isl = 6 and the codebook radius rangd k<18 . As
shown in figure 6, the MSB correction method of handling overflows is superior to the ZERO method for

product enumeration (and in general). Since MSB correction is simpler to implement than EVEN
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correction and generally better than ZERO correction, MSB correction is used in the following simulations

to handle all index overflows.

6.2 Indexing Method Simulations

We have simulated the code vector error resulting from an index bit error per position in the index, both
exactly and by theory for the MSB indexesflow corretion for the magnitude, linear, and product
enumeration. The results are shown R{6, 18) in figure 7. The theoretical bound uses a somewhat more
sophisticated model than equation (33) (see [41] for more details) that uses longer codeword length for the
first vector elements than later vector elements; the difference results in enumenatiacurves that are
concave rather than perfectlgear (as expected thugh our simplified model described in this paper), but

this second order effect is not large. The convergence of the theory and simulation curves on the right side
of figure 7 is because we know that the last bit of the magnitude and product enumerated code is a sign bit,
with error exatdy given by equations (38) and (57). We conclude from figure 7 that the most significant
bits are generally the best bits to protect, followed by the least significant bits, in magnitude and product
enumeration.

Finally, we simulate the various enumeration methods with MSB index overflowction. The five
methods described are as follows: 1) Random enumeration using equation (32); 2) Fischer's magnitude
enumeration; 3) Linear enumeration; 4) Product enumeration; 5) Product-product enumeration. Exact
simulation results over a wide range of ratlis k<60 , are only available for a smaller diménsiah, ,
because of the extremely large codebooks involved and simulation size constraints. As shown in figure 8,
the radial codebook error due to single bit index error by product enumeration is reduced by about 3 dB
over the previous enumeration methods, and by 6 dB over a purely reardanged codmok. The

theoretical estimates are useful to estimate the channel error performance of theseksoddka the

codebook size becomes too large for exact simulations.

7 Pyramid Vector Quantization for Images

Pyramid vector quantization has been previously used for DCT [7-14] and subband [15-24] image
compression because both the subband and transformed image data are similar to the Laplacian in
distribution. PVQ also has been considered in the context of matched joine®stwamnel cddg for

images [7][14][15], where the channel statistics are stationary and known. The following three sections
demonstrate the advantages of the new ersilient PVQ coding schemes introduced here for subband

image compression under varying channel conditions.
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The pyramid vector quantizer, by itself, assigns points to theesecodeword on a single pyramid
shell. For image compression applications where the vector lengths are small, the pyramid vector quantizer
is typically matched with a radial quantizer to form several concentric pyramid shells [1]. This is called
polar or productquantization, where the radius is quantized independently from the position on the shell.
We describe this method as polar quantization, in order to avoid confusion with the gventecanique.

Polar pyramid vector quantization utilizes four steps to code an input vector into digital bits. The first
step is to find the nearest pyramid shell to the input vector. The second step is to scale the point onto the
cubic lattice. The third step is to round the point to tharastpoint in the cubic lattice that is on the
pyramid shell. The fourth step is to enumerate that cubic lattice point, a process which assigns a unique
index to each point on the pyramid shell. These steps are shown in figure 9.

In exhaustively examing the radial versus shell quantizer bit allocations, we have found that the
radial position index should be allocated about as many bits as the typical sample element in the vector.
This means an overall quantizer resolution of 7 bits per sample element implies that the radial quantizer
resolution should be 7 bits. For very large vectors, the radial position index takes up a diminishing fraction
of the overall bits; this can be attributed to the asymptotic equipartition principle — for very large vectors,

most of the points cluster uniformly on very few shells.

8 Fixed rate PVQ subband coding

_ _ remove orthonormal _ o
The subband filter experiments use a ﬂtap guadrature mirror filter (QMF) with coefficients from the center

tap of (0.5645751 0.2927051 -0.05224239 -0.04270508 0.01995484) [29]. This filter was chosen for its
good overall performance, for its equal energy normalization interdiit frequency bands, and for its
reasonable length. The filter is recursively applied to the input image, breaking it into four levels of
subband decomposition as shown in figure 10 [29][30]. Our four level subband decomposition results in 31
frequency bands, rather than 13 for a logarithmic decomposition or 512 for a full four level decomposition.
This offers a good tradeoff between performance, computational overhead, and side information for the
subband variances.

After the subband decomposition, edcbquency band is coded using a fixed rate quantizer. The
lowest frequency band (DC band) is quantized with a Gaussian Lloyd-Max scalar quantizer. The upper
bandsare first scramblethto a random order to break up any correlation and then quantized with a polar
PVQ quantizer. The polar PVQ quantizers consists of a scaled Erlang radial quantizer, where the scaling is
determined to best fit generalized Gaussjan 0.6 data. This is combined with the PVQ shell quantizer,
to obtain the best radial/shell bit allocations that lie on the distortion-rate convex hull. The bit allocation for

the polar PVQ quantizer is determined through integer bit-allocation techniques [38][39] using
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experimentally obtained distortion per bit figures.
As shown in figure 11, on the USC database images Lena, Couple, LAX, and Mandrill, the
performance of the PVQgorithm exceeds that of JPEG with scaled suggested quantization matrix and

custom Hifman tables.

9 Channel robustness

For our channel robustness experiments, we use a simple channel model. The encoder always transmits the
same compressed image regardless of the actual channel because it does not know how many receivers are
listening or the channel noise characteristics at each receiver. The receivers, on the other hand, have
knowledge of its own individual channel noise conditions — both the average bit error rate and the presence
of total signal loss in a deep fade. This model conveys some of the problems associated with mobile
communication [32][33].

In our PVQ experiments, we only protect the scalar quantized DC band by repeating the two most
significant bits of each index 3 times. This incurs negligible overhead — about 0.016 bpp, and requires just
a simple majority decoder to correct bit errors in the DC bAHlather bands are PVQ encoded and are
not protected to show the inherent error resilientered by the new product enumgoa technique.

The difference in performance between product enumeration and magnitude enumeration on Lena at
0.5 bpp and LAX at 0.75 bpp is shown Figure 12. The high rate, low frequency bands experience the
greatest benefit — about 3 dB, translating to an overall image gain of up to 1.5 dB over a wide range of bit
error rates.

For comparison, we use the JPEG coder with resynchronization at every 6 macroblocks (JPEG-R);
and the JPEG coder with resynchronization and (2,1,6) Viterbi decoding [34][35] (JPEG-R (2,1,6)VD).
These JPEG implementatioase comparedvith the product enumerated PVQ technique in figure 13 for
Lena at 0.5 bpp. Clearly PVQ offers both better intrinsic coding performance and additional error
resilience. Only with sophisticated channel coding can the performance of JPEG berroadsilient,
but that significantly reduces the noiseless source codirfgrmance.

A direct comparison of the product enumerated and magnitude enumerated PVQ for the Lena and
LAX images are shown in figures 14 through 17. The images show a significant advantage of product

enumeration over magnitude enumeration in the reduction of larfgctrtin the decoded PVQ image.

10 Conclusion

Pyramid vector quantization is a form of vector quantization that does not require large codebook storage

and that has very simple systematic encoding and decoding algorithms. In this paper, we have introduced a
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new method of PVQ enumeration called product enumeration, which reduces the susceptibility to channel
noise by up to 3dB over existing methods for no additional coding overhead. These new product
enumeration techniques have efficient hardware variants and can be applied to othatdisythmetric
quantizers as well. We have also shown diffedndex overflow strategies that handle detectable errors
when the received index is outside the set of possible indices, a common problem with fixed-rate
enumerated codes.

These new error resilient PVQ techniques, when combined with subband coding, achieves better
compression performance than the variable rate JPEG image compression standard, and with much greater
robustness as well. In fact, over wide ranges of varying channel noisgraheedient PVQ techniques
can improve both mean squared error and visual fidelity over previous techniques and channel-coded
JPEG, and can sustain image quality under the presence okeworenipchannel error, thiout channel
coding of the PVQ data.
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Appendix A Nineteen Important Enumerative Formulas

The fundamental pyramid structure equations relate intimately to the number of I[6ink3 in the

pyramid codebookP(l,k) . In this chark, represents the vector lekgth, represents the rradius,
represents the magnitude of a significant element,sand  represents the number of significant elements.

Full details on their derivation and other asymptotic properties are described in [41].

N(LK) = Nk oy

dimension-radius reciprocity

(1= 1)N(I, k) = 2kN(1—-1, k) + (I = 1)N(1 =2, k) (42)

vector length recursion [14]

KN(I, k) = ﬂw k1) + (k= 2N(l, k-2) | @3

should vector radius recursion [14]

N(I, k) = Zzsdﬂ 1o (44)

enumeration formula by products

N(Lky = 5Ol =D+ (k=g

(45
DED -1 0 enumeration formula by convolutions

+k-1
'd< BN, k)<2'd . _ _ (46)
Oi1-1 asymptotic sandwich for k large
+k-1

"E’kgs N(I,k)szk% . “n

asymptotic sandwich for | large

K

Ny(,K) = Z N(I, k) = (N(I+1,K)+N(I,K))/2 48)

K=0 volume summation formula

Elnjs LK = k/s N (49)

magnitude of significant element for known s

- k(2k—s+1) (50)

s(s+1) energy of significant element for known s
(51)

2
=sHn
codebook energy for known s
_ k(k+ 1)(N(I, k+ 1) + N(1, k)) _K (52)
l+1 N(l, k) codebook energy

E[n2

(N(1+ 1, k) + N(I, k) —2) (53)

magnitude of significant element, n

ElnILK = 5507

E[n2 [u'ZN(|+1,k+ 1)-N(I + 1, k)—N(I,k)—4k—2% (54)
I, K)O +1 i

should be @ energy of significant element, n

E[s|| K = (N(l, k) =N(I-1, k))

number of significant elements, s

N(I,k)

—KE[n||, k]) (56)

approximate error energy for shape error
(57)

error-eneroy for sion-error
g7 J

2
—K/s) (58)
approximate error energy for shape error for known s
(59)
error energy for sign error for known s

2ls, 1 K] =

= 4E[n°

missing formulas, my mistake.
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