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ABSTRACT 

 
This paper presents an efficient intra prediction implementation for 
H.264/AVC in the frequency domain. Intra prediction in the 
frequency domain is vital for transform domain heterogeneous 
video transcoding in wireless and mobile networks. A limited 
computation capabilities constraint constitutes a burden over such 
networks. New distributed intra prediction arithmetic is proposed 
with only addition and shift operations for transform domain intra 
prediction modes computations. Compared to previous attempts 
the proposed method reduces the computations extensively by 
eliminating the expensive matrix multiplications and omits the 
need for excessive memory storage. 
 

Index Terms— Intra Prediction, Transform Domain, Distributed 
Arithmetic, H.264/AVC, Video Transcoding 
 

1. INTRODUCTION 
 
The great advances in mobile multimedia devices and wireless 
video communication have laid the ground for a wide spread of 
new applications and systems. Recently, this bursts the emergence 
of multimedia transcoding in mobile and wireless networks. Video 
Transcoding [1] is focused on filling up the gap between the high 
resource requirements of video data and the limited bandwidth and 
computational capabilities offered by wireless networks and 
handheld devices. Bit-rate reduction, spatial/temporal resolution 
reduction and format/standard conversion are the main applications 
behind video transcoding. 

H.264/AVC [2] were jointly designed by ITU and ISO for low 
to high bit rate applications with very high coding efficiency at 
1/3-1/2 the bit rate of the previous standards. Heterogeneous Video 
Transcoding from other standards to H.264 has gained more 
importance in the recent years [3, 4]. Moreover, frequency domain 
video transcoding was shown to be computationally efficient than 
pixel domain transcoding [5] as it eliminate the need for inverse 
transform/transform operations. H.264 defines intra prediction in 
the pixel domain. Transform domain intra prediction was 
investigated in [6] but it involved a considerable amount of matrix 
multiplications and additional memory storage. 

We adopt a new distributed arithmetic method (NEDA) 
described by the authors in [7] to reduce the computation 
complexity extensively by eliminating the expensive matrix 
multiplication completely. Only addition and shift operations are 
required for transform domain intra prediction modes 
computations. Moreover it omits the need for excessive memory 
storage appointing it for frequency domain video transcoding in 
wireless and mobile networks. 

This paper is organized as follows. In section 2, a brief 
overview of NEDA is provided. The proposed transform domain 

intra prediction is described in section 3. Computation complexity 
and conclusion are presented in sections 4 and 5 respectively. 
 

2. NEW DISTRIBUTED ARITHMETIC (NEDA) 
 
Distributed Arithmetic (DA) has achieved a large scale application 
in Digital Signal Processing (DSP) architectures [8]. The main 
advantage of DA approach is that it speeds up the multiplication 
process by pre-computing all possible product values and storing 
these values in memory. The input data can then be exploited to 
directly address the memory and the result. A drawback is that 
memory size grows exponentially with number of inputs and 
internal precision. 

A NEw Distributed Arithmetic (NEDA) was proposed in a 
previous work to implement the inner product of vectors in the 
form of 2’s complement numbers using only additions followed by 
a small number of shifts at the final stage. The architecture using 
NEDA is free of memory, multipliers and subtraction, making it 
very suitable for computation/area sensitive systems. 

In the following we give a brief derivation to NEDA, due to 
page limit interested reader is referred to [7] for full details. 
Consider the following matrix product: 

 

   (1) 

 

   is in 2’s complement format and can be expressed as: 
 

   (2) 
 

Where  and  is the sign bit, 
and  is the least significant bit.  is the input data words. 
Unlike DA, we distribute the bits of the fixed coefficients in 
NEDA not the bits of the frequently varying inputs. (M-N+1) is the 
DA precision of NEDA.  
Combining (1) and (2), we get: 
 

(3) 

 

Matrix  in (3) is crucial to NEDA since its structure can 
lead to savings in computations. It only consists of 0’s and 1’s. 
Computation of Y in (3) involves only addition operations. The 
final stage in (3) can be realized by small number of shift 
operations. We donate  as the adder array. 
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3. TRANSFORM DOMAIN INTRA PREDICTION 
 

In addition to inter prediction used in all video coding 
standards, H.264 achieves more compression efficiency by using 
neighboring samples of previously coded blocks to predict current 
blocks in a process known as intra prediction. Two common intra 
prediction modes are used in H.264, Intra_4x4 and Intra_16x16. 
Intra_4x4 support 9 prediction directions defined based on the 
spatial activity between blocks. Intra_16x16 support 4 prediction 
directions. Intra prediction modes and directions are selected based 
on minimizing block rate-distortion value. 

In the following sub-sections, we incorporate NEDA into the 
derivation of transform domain intra prediction. 
 
3.1. Intra_4x4  
 
Each 4x4 block is predicted from spatially neighboring samples as 
shown in Fig. 1a. Block pixel’s a-p is predicted from border coded 
samples in adjacent blocks (A-Q). The nine prediction directions 
for each block are shown in Fig. 1b. We draw the analysis for 
selected prediction directions; other directions follow the same 
analogy. 
 

  
Figure 1. (a) Intra_4x4 prediction. (b) Prediction directions 

 
3.1.1. Mode 0: Vertical Prediction 
In this prediction mode pixels of each of the four columns of the 
current block are predicted from the neighboring pixels A-D 
respectively. The predicted block can be expressed in matrix form 
as: 
 

  (4) 

 

where ‘x’ donate “don’t care” pixels in the neighboring block. 
Applying H.264 transform to both sides of (4): 
 

 (5) 

 

We donate the second matrix as the fixed coefficients matrix [C]. 
Equation (5) implies that intra prediction can be achieved in the 
transform domain but it requires 8 multiplications and 12 additions 
for such simple mode. Besides, [C] has to be pre-computed and 
stored in memory. Number of multiplications and memory storage 
grows much higher for more complex modes as we’ll observe later. 

We begin our justification for using NEDA with discussing 
the generation of the adder arrays by distributing the bits of the 
coefficients in [C]. First, each transform coefficient of the 
predicted block’s first column is calculated as: (other columns will 
follow the same analysis) 

 

    (6) 
 

Where  represent the first row vector in the fixed 
coefficient matrix, k = 0  3 and u = 0  3; and  represent 
the kth coefficient of the coded input neighboring block’s first 
column vector.  

Note that equation (3) is specified for either integer or fraction 
coefficients but not both at the same time, whereas, equation (5) 
has [C] with both integers and fractions coefficients. Therefore, we 
modify NEDA by expanding (3) to accommodate both integer and 
fractional coefficients as: 

 

     (7) 
 

   
 

 (8) 

 

Where  and  are the integer and fractional adder arrays. 
And, we rewrite [C] as the sum of its integer and fractional parts 
as: 
 

, (9) 

 

Now from (6), and if DA precision is chosen to be 11 bits, then we 
have  (for the fractional part) as in (10): 
 

    (10) 

 

   (11) 

 

Note that  is the sign bit and  is the LSB. 
Expressed in its 11 bit DA form, we have 

as the adder array of  as 
in (11).  represent the 2’s complement of the 
coefficients in the first row of the fractional part in [C]. The bottom 
row of  is the sign bits of  and the top row is the LSBs. 

Note that matrix [A] is a sparse matrix in most cases due to 
the inherent nature of DA representation of numbers. A direct 
implementation of  on a row-by-row basis will require 4 
additions whereas by using our compression scheme in [7], which 
ensures that common intermediate operations can be shared; only 1 
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addition is required. The butterfly structure after compression is 
shown in Fig. 2b.  

Figure 2. Butterfly structures for Mode 0 (a) Integer (b) Fraction 
 

For  (the integer part), one can show that it only require 2 
addition as shown in Fig. 2a since  as in (11) have 1’s only in 
its first row. 

From the above analysis, only 3 additions are needed to 
produce the first transform coefficient. A total of 12 additions and 
10 shifts are required to compute this mode’s prediction sample of 
the current block in the transform domain with no need for any 
multiplication operation or memory storage. 
 
3.1.2. Mode 1: Horizontal Prediction 
The prediction block following this mode is predicted from the 
neighboring pixels I-L and has the form of: 
 

,  (12) 

 

which has the same complexity analysis as (5). 
 
3.1.3. Mode 2: DC Prediction 
The predicted pixels of this mode are the average of the border 
pixels of the above and to the left blocks: 
 

.    (13) 

 

The H.264 integer transform of (12) is expressed as: 
 

  (14) 

 

From (14), we can see that the DC prediction required 
computations that already been done in the Vertical and Horizontal 
modes. Therefore, only one addition is required to compute the 
prediction samples of the current block in the transform domain. 
 
3.1.4. Mode 4: Diagonal_Down/Right Prediction 
This mode is the most complicated among all modes. According to 
[6], it requires 232 multiplications and 200 additions per block and 
a considerable number of pre-computed matrices to be stored in 
memory. We analyze this mode to show the amount of saving in 
computations using NEDA.  

Using matrix manipulation, the predicted samples values can 
be split according to predictor pixels from the neighboring (above, 
corner and left) blocks: 

 

 

 

 

   

 

Then each row in each term is treated separately. For example, in 
the first term the first row can be expressed as: 
 

 

  (16) 

 

The first matrix in the right-hand-side of (16) is a fixed coefficient 
matrix like the one described in the previous modes. The transform 
of such matrix, donated as [C4a] is: 
 

  (17) 

 

From (17) we see that the first row (R1) is the same as the third 
row (R3) thus both form only one adder array and the resulting 
transform coefficients will be the same. Also, the fourth row (R4) 
is the shift right operation of the second row (R2).  

Therefore, only 2 adder arrays are needed to generate all the 
transform coefficients result from multiplying [C4a] by the 
transform of the above block in (16). We donate this sub-term as 
L1. Figure 2a and 2b show the butterfly structures generated from 
the 2 adder arrays. 

Figure 3. Butterfly structures for Mode 4 
 

Only 3 additions are needed to compute the first and third 
transform coefficients (P0,P2) in each column and 4 additions for 
the second and fourth (P1,P3) as shown in Fig. 3. By further 
examining the butterfly structures, it can be seen that there is a 
unique patterns of 2-inputs additions (for example p(0) + p(2) in 
Fig. 3 appears in both structures). We utilize that to achieve more 
compression in additions. A total of 20 additions are needed for all 
the transform coefficients computation of L1. 

Note that the rows in the first term of (15) have a vertical shift 
relation. Exploiting this relation simplify the computation. For 
example, L2 (of the second row) is expressed as: 
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[ ] have the same rows as [ ] and can be rewritten as: 
 
 

 (18) 

 

Therefore the same adder arrays and the same results from L1 are 
used for L2 and also for the third (L3) and fourth (L4) rows with no 
additional computations. For completeness,  and  of the 
third and fourth rows respectively are shown in (18). 

Due to page limit we omit the derivation of the other 
Intra_4x4 modes. Using the same analysis described above, the 
transform domain intra prediction of these modes is 
straightforward. 
 
3.2. Intra_16x16 
 

Intra_16x16 supports 4 prediction modes. The transform domain 
prediction of these modes involves much less computation than 
Intra_4x4 and can be derived using the same analysis drawn above. 
Moreover, Prediction samples of the first two modes: 0 (Vertical) 
and 1 (Horizontal) can be extracted directly from the first two 
modes of Intra_4x4 and does not require any computations. 
 

4. COMPUTATIONAL COMPLEXITY ANALYSIS 
 
NEDA keeps the data inputs in their natural bit-parallel form and 
manipulates the fixed coefficients in a distributed bit domain 
leading to only addition and shift operations and as a result does 
not require any multiplication or ROM. Furthermore, NEDA also 
exhibits scalability. When higher precision is desired, modules 
required to produce the extra DA bit outputs can be added without 
making any change to the old system. 

Predicted blocks are computed on a row by row basis and 
internal results are shared by other modes. For example, L1-L4 of 
mode 4 appears in other modes and is reused with no additional 
computations. The compression scheme is incorporated whenever 
possible to achieve more savings in the addition operations. 

Table 1 shows a consistent comparison between the 
operations required for Intra_4x4 prediction using matrix 
multiplication proposed in [6] and that is using our method. A 
maximum of 30% increase in the number of additions is reported 
for the most complicated modes which are entirely compensated 
for by eliminating matrix multiplications operations and the need 
to store pre-computed matrices required by each mode. A small 
amount of shift operations are required at the final stage of NEDA 
which is much less expensive than multiplication operations. For 
example, mode 3 would require only 182 shift operations 
compared to 168 multiplications. Intra_16x16 results are shown in 
Table 2 with no increase in additions as most of the computations 
can be reused from Intra_4x4. 
 

5. CONCLUSION 
 
Video transcoding in the transform domain and multimedia 
transcoding in wireless and mobile networks has necessities the 
need for computationally efficient algorithms. Using distributed 
arithmetic, we presented a basis for a low computation transform 
domain intra prediction method suitable for complexity/area 
sensitive systems. 

Table 1. Computational Complexity of Intra_4x4 Prediction 

Table 2. Computational Complexity of Intra_16x16 Prediction 
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Mode 
[6] proposed 

Multiplication Add Multiplication Add 
0 8 12 

Zero 
Multiplication 

Operation 

12 
1 8 12 12 
2 2 1 1 
3 168 136 180 
4 232 200 252 
5  192 176  164 
6  192 176   128 
7  128 112  112 
8  64 48  48 

Mode 
[6] proposed 

Multiplication Add Multiplication Add 
0 0 0 

Zero 
Multiplication 

Operation 

0 
1 0 0 0 
2 8 7 7 
3 26 72 72 
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