
AN EFFICIENT FREQUENCY DOMAIN INTRA PREDICTION FOR H.264/AVC

Mohsen Shaaban and Magdy Bayoumi

The Center for Advanced Computer Studies, University of Louisiana at Lafayette
{mmm5554, mab}@cacs.louisiana.edu

ABSTRACT

This paper presents an efficient intra prediction implementation for
H.264/AVC in the frequency domain. Intra prediction in the
frequency domain is vital for transform domain heterogeneous
video transcoding in wireless and mobile networks. A limited
computation capabilities constraint constitutes a burden over such
networks. New distributed intra prediction arithmetic is proposed
with only addition and shift operations for transform domain intra
prediction modes computations. Compared to previous attempts
the proposed method reduces the computations extensively by
eliminating the expensive matrix multiplications and omits the
need for excessive memory storage.

Index Terms— Intra Prediction, Transform Domain, Distributed
Arithmetic, H.264/AVC, Video Transcoding

1. INTRODUCTION

The great advances in mobile multimedia devices and wireless
video communication have laid the ground for a wide spread of
new applications and systems. Recently, this bursts the emergence
of multimedia transcoding in mobile and wireless networks. Video
Transcoding [1] is focused on filling up the gap between the high
resource requirements of video data and the limited bandwidth and
computational capabilities offered by wireless networks and
handheld devices. Bit-rate reduction, spatial/temporal resolution
reduction and format/standard conversion are the main applications
behind video transcoding.

H.264/AVC [2] were jointly designed by ITU and ISO for low
to high bit rate applications with very high coding efficiency at
1/3-1/2 the bit rate of the previous standards. Heterogeneous Video
Transcoding from other standards to H.264 has gained more
importance in the recent years [3, 4]. Moreover, frequency domain
video transcoding was shown to be computationally efficient than
pixel domain transcoding [5] as it eliminate the need for inverse
transform/transform operations. H.264 defines intra prediction in
the pixel domain. Transform domain intra prediction was
investigated in [6] but it involved a considerable amount of matrix
multiplications and additional memory storage.

We adopt a new distributed arithmetic method (NEDA)
described by the authors in [7] to reduce the computation
complexity extensively by eliminating the expensive matrix
multiplication completely. Only addition and shift operations are
required for transform domain intra prediction modes
computations. Moreover it omits the need for excessive memory
storage appointing it for frequency domain video transcoding in
wireless and mobile networks.

This paper is organized as follows. In section 2, a brief
overview of NEDA is provided. The proposed transform domain

intra prediction is described in section 3. Computation complexity
and conclusion are presented in sections 4 and 5 respectively.

2. NEW DISTRIBUTED ARITHMETIC (NEDA)

Distributed Arithmetic (DA) has achieved a large scale application
in Digital Signal Processing (DSP) architectures [8]. The main
advantage of DA approach is that it speeds up the multiplication
process by pre-computing all possible product values and storing
these values in memory. The input data can then be exploited to
directly address the memory and the result. A drawback is that
memory size grows exponentially with number of inputs and
internal precision.

A NEw Distributed Arithmetic (NEDA) was proposed in a
previous work to implement the inner product of vectors in the
form of 2’s complement numbers using only additions followed by
a small number of shifts at the final stage. The architecture using
NEDA is free of memory, multipliers and subtraction, making it
very suitable for computation/area sensitive systems.

In the following we give a brief derivation to NEDA, due to
page limit interested reader is referred to [7] for full details.
Consider the following matrix product:

 (1)

 is in 2’s complement format and can be expressed as:

 (2)

Where and is the sign bit,
and is the least significant bit. is the input data words.
Unlike DA, we distribute the bits of the fixed coefficients in
NEDA not the bits of the frequently varying inputs. (M-N+1) is the
DA precision of NEDA.
Combining (1) and (2), we get:

(3)

Matrix in (3) is crucial to NEDA since its structure can
lead to savings in computations. It only consists of 0’s and 1’s.
Computation of Y in (3) involves only addition operations. The
final stage in (3) can be realized by small number of shift
operations. We donate as the adder array.

2460978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008

3. TRANSFORM DOMAIN INTRA PREDICTION

In addition to inter prediction used in all video coding
standards, H.264 achieves more compression efficiency by using
neighboring samples of previously coded blocks to predict current
blocks in a process known as intra prediction. Two common intra
prediction modes are used in H.264, Intra_4x4 and Intra_16x16.
Intra_4x4 support 9 prediction directions defined based on the
spatial activity between blocks. Intra_16x16 support 4 prediction
directions. Intra prediction modes and directions are selected based
on minimizing block rate-distortion value.

In the following sub-sections, we incorporate NEDA into the
derivation of transform domain intra prediction.

3.1. Intra_4x4

Each 4x4 block is predicted from spatially neighboring samples as
shown in Fig. 1a. Block pixel’s a-p is predicted from border coded
samples in adjacent blocks (A-Q). The nine prediction directions
for each block are shown in Fig. 1b. We draw the analysis for
selected prediction directions; other directions follow the same
analogy.

Figure 1. (a) Intra_4x4 prediction. (b) Prediction directions

3.1.1. Mode 0: Vertical Prediction
In this prediction mode pixels of each of the four columns of the
current block are predicted from the neighboring pixels A-D
respectively. The predicted block can be expressed in matrix form
as:

 (4)

where ‘x’ donate “don’t care” pixels in the neighboring block.
Applying H.264 transform to both sides of (4):

 (5)

We donate the second matrix as the fixed coefficients matrix [C].
Equation (5) implies that intra prediction can be achieved in the
transform domain but it requires 8 multiplications and 12 additions
for such simple mode. Besides, [C] has to be pre-computed and
stored in memory. Number of multiplications and memory storage
grows much higher for more complex modes as we’ll observe later.

We begin our justification for using NEDA with discussing
the generation of the adder arrays by distributing the bits of the
coefficients in [C]. First, each transform coefficient of the
predicted block’s first column is calculated as: (other columns will
follow the same analysis)

 (6)

Where represent the first row vector in the fixed
coefficient matrix, k = 0 3 and u = 0 3; and represent
the kth coefficient of the coded input neighboring block’s first
column vector.

Note that equation (3) is specified for either integer or fraction
coefficients but not both at the same time, whereas, equation (5)
has [C] with both integers and fractions coefficients. Therefore, we
modify NEDA by expanding (3) to accommodate both integer and
fractional coefficients as:

 (7)

 (8)

Where and are the integer and fractional adder arrays.
And, we rewrite [C] as the sum of its integer and fractional parts
as:

, (9)

Now from (6), and if DA precision is chosen to be 11 bits, then we
have (for the fractional part) as in (10):

 (10)

 (11)

Note that is the sign bit and is the LSB.
Expressed in its 11 bit DA form, we have

as the adder array of as
in (11). represent the 2’s complement of the
coefficients in the first row of the fractional part in [C]. The bottom
row of is the sign bits of and the top row is the LSBs.

Note that matrix [A] is a sparse matrix in most cases due to
the inherent nature of DA representation of numbers. A direct
implementation of on a row-by-row basis will require 4
additions whereas by using our compression scheme in [7], which
ensures that common intermediate operations can be shared; only 1

2461

addition is required. The butterfly structure after compression is
shown in Fig. 2b.

Figure 2. Butterfly structures for Mode 0 (a) Integer (b) Fraction

For (the integer part), one can show that it only require 2
addition as shown in Fig. 2a since as in (11) have 1’s only in
its first row.

From the above analysis, only 3 additions are needed to
produce the first transform coefficient. A total of 12 additions and
10 shifts are required to compute this mode’s prediction sample of
the current block in the transform domain with no need for any
multiplication operation or memory storage.

3.1.2. Mode 1: Horizontal Prediction
The prediction block following this mode is predicted from the
neighboring pixels I-L and has the form of:

, (12)

which has the same complexity analysis as (5).

3.1.3. Mode 2: DC Prediction
The predicted pixels of this mode are the average of the border
pixels of the above and to the left blocks:

. (13)

The H.264 integer transform of (12) is expressed as:

 (14)

From (14), we can see that the DC prediction required
computations that already been done in the Vertical and Horizontal
modes. Therefore, only one addition is required to compute the
prediction samples of the current block in the transform domain.

3.1.4. Mode 4: Diagonal_Down/Right Prediction
This mode is the most complicated among all modes. According to
[6], it requires 232 multiplications and 200 additions per block and
a considerable number of pre-computed matrices to be stored in
memory. We analyze this mode to show the amount of saving in
computations using NEDA.

Using matrix manipulation, the predicted samples values can
be split according to predictor pixels from the neighboring (above,
corner and left) blocks:

Then each row in each term is treated separately. For example, in
the first term the first row can be expressed as:

 (16)

The first matrix in the right-hand-side of (16) is a fixed coefficient
matrix like the one described in the previous modes. The transform
of such matrix, donated as [C4a] is:

 (17)

From (17) we see that the first row (R1) is the same as the third
row (R3) thus both form only one adder array and the resulting
transform coefficients will be the same. Also, the fourth row (R4)
is the shift right operation of the second row (R2).

Therefore, only 2 adder arrays are needed to generate all the
transform coefficients result from multiplying [C4a] by the
transform of the above block in (16). We donate this sub-term as
L1. Figure 2a and 2b show the butterfly structures generated from
the 2 adder arrays.

Figure 3. Butterfly structures for Mode 4

Only 3 additions are needed to compute the first and third
transform coefficients (P0,P2) in each column and 4 additions for
the second and fourth (P1,P3) as shown in Fig. 3. By further
examining the butterfly structures, it can be seen that there is a
unique patterns of 2-inputs additions (for example p(0) + p(2) in
Fig. 3 appears in both structures). We utilize that to achieve more
compression in additions. A total of 20 additions are needed for all
the transform coefficients computation of L1.

Note that the rows in the first term of (15) have a vertical shift
relation. Exploiting this relation simplify the computation. For
example, L2 (of the second row) is expressed as:

2462

[] have the same rows as [] and can be rewritten as:

 (18)

Therefore the same adder arrays and the same results from L1 are
used for L2 and also for the third (L3) and fourth (L4) rows with no
additional computations. For completeness, and of the
third and fourth rows respectively are shown in (18).

Due to page limit we omit the derivation of the other
Intra_4x4 modes. Using the same analysis described above, the
transform domain intra prediction of these modes is
straightforward.

3.2. Intra_16x16

Intra_16x16 supports 4 prediction modes. The transform domain
prediction of these modes involves much less computation than
Intra_4x4 and can be derived using the same analysis drawn above.
Moreover, Prediction samples of the first two modes: 0 (Vertical)
and 1 (Horizontal) can be extracted directly from the first two
modes of Intra_4x4 and does not require any computations.

4. COMPUTATIONAL COMPLEXITY ANALYSIS

NEDA keeps the data inputs in their natural bit-parallel form and
manipulates the fixed coefficients in a distributed bit domain
leading to only addition and shift operations and as a result does
not require any multiplication or ROM. Furthermore, NEDA also
exhibits scalability. When higher precision is desired, modules
required to produce the extra DA bit outputs can be added without
making any change to the old system.

Predicted blocks are computed on a row by row basis and
internal results are shared by other modes. For example, L1-L4 of
mode 4 appears in other modes and is reused with no additional
computations. The compression scheme is incorporated whenever
possible to achieve more savings in the addition operations.

Table 1 shows a consistent comparison between the
operations required for Intra_4x4 prediction using matrix
multiplication proposed in [6] and that is using our method. A
maximum of 30% increase in the number of additions is reported
for the most complicated modes which are entirely compensated
for by eliminating matrix multiplications operations and the need
to store pre-computed matrices required by each mode. A small
amount of shift operations are required at the final stage of NEDA
which is much less expensive than multiplication operations. For
example, mode 3 would require only 182 shift operations
compared to 168 multiplications. Intra_16x16 results are shown in
Table 2 with no increase in additions as most of the computations
can be reused from Intra_4x4.

5. CONCLUSION

Video transcoding in the transform domain and multimedia
transcoding in wireless and mobile networks has necessities the
need for computationally efficient algorithms. Using distributed
arithmetic, we presented a basis for a low computation transform
domain intra prediction method suitable for complexity/area
sensitive systems.

Table 1. Computational Complexity of Intra_4x4 Prediction

Table 2. Computational Complexity of Intra_16x16 Prediction

6. ACKNOWLEDGEMENT

The authors acknowledge the support of the U.S. Department of
Energy (DoE), EETAPP program DE97ER12220, the Governor’s
Information Technology Initiative, and NSF, INF 6-001-006.

7. REFERENCES

[1] I. Ahmad, X. Wei, Y. Sun, Y. Zhang, "Video Transcoding:

An Overview of Various Techniques and Research Issues,"
IEEE Trans. Multimedia, vol. 7, p. 12, 2005.

[2] "Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC)," 2003.

[3] Y. Hong, K. Lee, J. Kim, and W. Cho, "High Speed
Architecture for MPEG-2/H.264 Video Transcoding," in
International Symposium on Communications and
Information Technologies, pp. 674--678, 2006.

[4] V. A. Nguyen and T. Peng, "Efficient video transcoding
between H.263 and H.264/AVC standards," in IEEE
International Symposium on Circuits and Systems pp. 904-
907 Vol. 2, 2005.

[5] P. Assuncao and M. Ghanbari, "A Frequency-Domain Video
Transcoder for Dynamic Bit-Rate Reduction of MPEG-2 Bit
Streams," IEEE Trans. Circuits Syst. Video Technol., vol. 8,
p. 15, 1998.

[6] C. Chen, W. Ping-Hao, and H. Chen, "Transform-domain
intra prediction for H.264," in IEEE International Symposium
on Circuits and Systems, pp. 1497-1500 Vol. 2, 2005.

[7] A. M. Shams, A. Chidanandan, W. Pan, and M. A. Bayoumi,
"NEDA: a low-power high-performance DCT architecture,"
IEEE Transactions on Signal Processing, vol. 54, pp. 955-
964, 2006.

[8] S. A. White, "Applications of distributed arithmetic to digital
signal processing: a tutorial review," IEEE ASSP Magazine,
vol. 6, pp. 4-19, 1989.

Mode
[6] proposed

Multiplication Add Multiplication Add
0 8 12

Zero
Multiplication

Operation

12
1 8 12 12
2 2 1 1
3 168 136 180
4 232 200 252
5 192 176 164
6 192 176 128
7 128 112 112
8 64 48 48

Mode
[6] proposed

Multiplication Add Multiplication Add
0 0 0

Zero
Multiplication

Operation

0
1 0 0 0
2 8 7 7
3 26 72 72

2463

