
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 37, NO 5, SEPTEMBER 1991 1355 

A Vector Quantizer for the Laplace Source 
Peter  F. Swaszek, Member, IEEE 

Abstract-It is well known that vector quantizers (VQ’s) can 
have substantial gain in performance over scalar quantizers; 
however, due to their complexity, optimal VQs are often limited 
to low bit rate/dimension situations. A low complexity, nearly 
optimal VQ for the independent Laplace source is presented. 
Both moderate and high bit rate results are included (greater 
than one bit per dimension). The VQ is a generalization of 
Fischer’s pyramid VQ and is similar in structure to the unre- 
stricted polar quantizers previously presented for the indepen- 
dent Gaussian source. 

Index Terms -Vector quantization, source coding, pyramid 
VQ. 

I. INTRODUCTION 
VECTOR quantizer (VQ) is a mapping Q from a A continuous input space onto a finite number of 

points. Typically the input space considered is the k- 
dimensional Euclidean space !Ilk and the output space is 
defined as N distinct points (codevectors) in ! ) I k  (a data 
rate of b = (1/ k)log, N bits per dimension). The input 
to the VQ is a random vector x with probability density 
function f ( x ) .  A k-dimensional, N-level VQ is character- 
ized by the set {g,, f,; i = 1,2, . . . N }  where the g1 are 
the quantization regions (disjoint and covering !)I and 
the -E, are their associated codevectors. The VQ operates 
by mapping all points of g1 onto 2,. As one solution to 
the source encoding problem, the performance advan- 
tages of vector quantizers have been known for over 25 
years [33]. Much relevant work in the area has appeared 
since. Most of the available design work on VQ’s is in the 
low resolution region [7], [121, [MI; either this is the 
region of interest (e.g., image coding) or the design algo- 
rithms are impractical at higher rates. In the high rate 
region the previous research is often nonconstructive [6], 
[141, [331 (bounds on performance, etc.) or dependent 
upon a particular source model [91, [131, [271, [301. 

As a performance criterion for this discussion, consider 
the mean-squared error per dimension (mse) which has 
experienced wide application due to its tractability and 
interpretation as quantization noise power. With the above 
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notation, the mse is 

The optimum k-dimensional, N region VQ has been 
shown [33] for large N to have mse performance 

where G, is a constant dependent only upon the dimen- 
sion [9], [14], typically thought of as the coefficient of 
quantization for a uniform source. This approximate mse 
result helps to predict the gain in performance of VQ’s 
over scalar quantizers. It can be shown that performance 
increases with an increase in dimension, even if the source 
variables are independent [20]. Unfortunately this result 
is not constructive; hence, researchers have developed 
methods for constructing VQ’s, with (hopefully) near op- 
timum performance. 

One approach for constructing VQ’s, which has been 
successful for spherically symmetric source models, is to 
transform the source variables to (spherical) coordinates 
that describe contours of constant probability and employ 
product code quantizers on this new coordinate set [l], 
[41, [5], [24], [291. To improve performance the product 
code quantizers were modified to allow variable resolu- 
tion dependent upon the earlier quantizations. These 
unrestricted VQ’s [301, [321 asymptotically achieved nearly 
optimum performance. In this paper, we describe an 
unrestricted VQ appropriate for the independent and 
identically distributed (i.i.d.) Laplace source. Assuming 
zero means and unit variances, the source vector x with 
elements xl,- . . , x k  has probability density function 

(3) 

and is commonly used to model differential speech [231 
and the discrete cosine transform of image data [251. For 
this source, the mse gain of vector quantization over 
scalar quantization can be up to 2.44 dB in dimension 
two, 3.33 dB in dimension three, growing in the limit of 
large dimension to 7.16 dB. These numbers are asymp- 
totic gains for high resolution quantization. Similar results 
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for low bit rates can be computed from the rate distortion 
function [221. 

The structure of this unrestricted VQ for the Laplace 
source is based on concentric pyramids (versus concentric 
spheres in [30], [32]) and is directly related to Fischer’s 
pyramid VQ [13]. There are several key differences be- 
tween our approach and Fischer’s. 

Derivation of the performance of the pyramid VQ’s 
in [ 131 follows rate distortion theory arguments, let- 
ting the dimension of the system increase until pyra- 
mid hardening occurs. In contrast, our derivation is 
based on quantization theory and is asymptotic in the 
bit rate, not dimension. Our results are valid for any 
number of dimensions. 
Although the derivation of [13] assumes one pyramid, 
the example pyramid VQ’s are product code form; a 
gain scalar is quantized followed by a quantization of 
the location on the pyramid. Our VQ begins with 
concentric pyramids; we derive results for both the 
product code arrangement as well as the more versa- 
tile unrestricted format. 
Although not stated directly in [13], the pyramid 
VQ’s are based on translates of the A,, lattice [91, [151 
(described below) as a VQ subsystem. The presenta- 
tion herein permits the use of any lattice VQ. 

We believe this work to be a useful complement to that of 
[131. 

This paper begins with a description of the VQ in k 
dimensions. Next, an analysis of performance is presented 
with results for both the product code pyramid VQ as 
well as the unrestricted version. This analysis, although 
asymptotic in nature, helps to demonstrate the perfor- 
mance advantages of our VQ. Details of the analysis are 
relegated to the Appendix. Implementation issues of the 
VQ are discussed next with emphasis on the A,, lattice 
case. Nonasymptotic results are then considered. In par- 
ticular, we present an approximate design algorithm for 
finite bit rate and demonstrate the usefulness of this VQ 
through several example designs with Monte Carlo simu- 
lations of performance. 

11. THE VQ IN k DIMENSIONS 
The source probability density function in (3) has con- 

tours of constant probability that are scaled versions of 
the cross polytope P k  Ell, pp. 120-1211 centered on the 
origin. This polytope has 2k vertices, two on each of the 
original Euclidean axes, and 2k  faces, each a regular 
simplex, ctk-  of dimension k - 1. For dimension two, 
this contour is a diamond; in dimension three, a regular 
octahedron. 

Since the VQ structure depends upon a change of 
coordinates to those of constant probability, we consider 
the gain g and k - 1 location variables u j ,  j = 1, . . , k - 1, 
defined by 

Note that to be able to undo this transformation we need 
the signs of each xi (equivalent to k bits). This transfor- 
mation (sometimes called Helmert’s [17, pp. 12-14]) is 
orthogonal. The coordinate g specifies the size of the 
polytope and the uj  specifies the location on one of its 
faces. For a fixed value of g the polytope has edges of 
length gJ2k. Further, each face, a simplex, has volume 
(area in dimension k)  

1, k /2 

Changing variables and letting U represent the vector 
[ U , ;  . ., u k -  1], the density function for the source be- 
comes 

and is not explicitly a function of U. In other words, 
conditioned on the value of g, U is uniformly distributed 
on the simplex ~ y ~ - ~ ( g ) .  For k = 2 this simplex is a line 
interval, for k = 3 an equilateral triangle, for k = 4 a 
regular tetrahedron, etc. Integrating over the simplex, the 
marginal density of g is 

The unrestricted uector quantizer (UVQ) is imple- 

1) transform from x to g and U, save the signs of 

2) scalar quantize g to Ng levels, call the result gz; 
3) project U onto cu,-,($,) (this is necessary only if 

4) enter a lookup table based upon the result of Step 2) 
for Nu(gl),  the number of regions for (resolution of) 
the U quantizer; 

5 )  quantize U to the resolution found in Step 4) using a 
lattice vector quantizer of dimension k - 1 on the 
simplex ak- l (gr)  (this simplex has edge length 

6) transmit and receive an index based on Steps 2) and 

7) retransform to P. 
For example, Fig. 1 shows the N = 16 UVQ in dimen- 

sion two. Note that g is quantized to Ng = 2 levels. The U 

variable, a scalar, falls on the real line between - g and 
+ g. Our simplex, an interval of length 2&, is the segment 
from - g to + $. The lattice quantizer for U is a uniform 
scalar quantizer with either two or four levels. We set this 
uniform quantizer so that - 2 and + g are the extreme 
representation points. Note that for k = 2 we have only 
one choice for the lattice (intervals on 8 ‘1 while for k > 2 
we have many choices. Below we present results for any 
choice of the lattice. Specifics for the A,, lattices [9], [15] 
are described. 

mented as follows: 

the x r ;  

g > f i r ) ;  

g r J 2 k 1 ;  
5 )  over the channel; and 

. 
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Fig. 1. Dimension two, N = 16 WQ. 

111. ASYMPTOTIC ANALYSIS 
The goal of asymptotic (high bit rate, N -+ m) quantiza- 

tion theory is first to predict performance, and second, for 
use in design. For example, Bennett's integral [31 de- 
scribes the minimum mse for a scalar quantizer; the 
compressor function can then be used to provide approxi- 
mate quantizer parameters. 

Let S k p l ( z )  be a typical quantization region of the 
k - 1 dimensional lattice VQ for U on f f k - l ( $ )  in Step 5 )  
of our VQ algorithm. (Actually the boundary of f f k - 1 ( $ )  

distorts the shapes of some of the VQ regions; for our 
analysis we will ignore these effects). k t  U k - 1  be the 
inertia of a normalized (unit volume) version of this 
region (equivalent to U(Sk- l (g) )  using the notation of 
[9]). It is shown in the appendix that the mse for the UVQ 
with an i.i.d. Laplace input can be approximated by 

Details of an asymptotic analysis appear in the Ap- 
pendix. Specifically, we replace the rate allocation se- 
quence Nu($) by an allocation function N J g )  and con- 
sider a compandor implementation for the g quantizer 
with compressor function h,  expandor h- ' ,  and N, levels 
in the scalar uniform quantizer. A Bennett-like expression 
for the mse is developed, which is dependent upon the 
choice of the functions N J g )  and h ( g )  and the parame- 
ters Ng and 1 .  This expression is 

( k  - 1)(2k)k '2uk- l  ( 2kkk/2 )'I"-') 
+ ( k  - l ) !  

k !  

(4) 

From this point we can follow two directions to optimize 

this expression: force N J g )  to be a constant (Fischer's 
pyramid vector quantizer) or consider the unrestricted 
format (UVQ). 

The Pyramid VQ: The pyramid vector quantizer is based 
on constant resolution for each pyramid 

For fixed values of k and N the mse is then only a 
function of the gain compressor, h ( g ) ,  the gain resolution, 
N,, and the uniform vector quantizer for U. Optimization 
over N, (equating the derivative to zero) and h ( g )  (the 
calculus of variations or Holder's inequality) yields 

This mse result will be compared to other VQ's. We note 
that this result is not exactly applicable to Fischer's pyra- 
mid VQ; in [13] the gain quantizer is a Gaussian quan- 
tizer, different from our best pyramid VQ compressor. 
However, for larger k the compressors converge (a cen- 
tral limit theorem argument) and we expect little differ- 
ence in the two results. Also in [13] the quantization 
codevectors on the pyramid are forced to satisfy the 
relation 

k 

lxil = m, 
i = l  

with m and each x i  being integers. The lattice Ak-1 is 
defined as that subset of the dimension k integer lattice 
Z k  whose coefficients sum to zero [91, [151 

k 

c x i = 0  
i = l  

(i.e., those Z k  lattice points that fall on a hyperplane 
slicing through the origin). Fischer's VQ codevectors then 
are a translate of this lattice by m units normal to this 
hyperplane. With this realization, Uk-1 for the pyramid 
VQ is the normalized inertia for the Ak-1 lattice [91 

U k - , = ( k - 1 ) G  -+-  . ( 1; 6;) 

It can be shown that the A , -  lattice has other properties 
that will be especially convenient for implementation. For 
example, one can scale the lattice so that lattice points 
fall directly on the vertices of the simplex f fk- ] ($) .  Fur- 
ther, a simple implementation for the UVQ exists (and is 
described later). 

The Unrestricted VQ: The total number of representa- 
tion points in !Tik is a fixed constant N .  As a function of 



1358 IEEE TRANSACTIONS O N  INFORMATION THEORY, VOL. 37, NO. 5 ,  SEPTEMBER 1991 

o 4 7.16 dB 
71 

0 

dimension one might want to implement other lattice 
VQ’s for U. 

in 
x o  o - the optimum VQ 

o - pyramid VQ 

a m  
dB 31 o 

P 

1 2l O 

* - UVQ with best lattice 
* - UVQ with Ak-1 lattice 

‘k 2 3 4 5 6 7 8 9 ... 20 

Dimension k 
Fig. 2. Asymptotic gains in m e  over scalar quantization. 

the choices of N, and Nu(g^,) this can be written as 
N8 

C NU( gi) = N .  ( 5 )  
i = l  

With this constraint we can minimize the mse over the 
choice of the levels allocation function Nu(g) (using a 
Lagrange multiplier and the calculus of variations), the g 
quantizer’s resolution Ng (equate the derivative to zero) 
and compressor h(g )  (apply Holder’s inequality). The 
main result is 

For comparison, the minimum mse from (2) for this 
source is 

We note that these last two mse expressions are of very 
similar forms; the difference is the term due to the inertia 
of the basic quantization region. In the optimum VQ, this 
inertia is G,; for the UVQ our basic region is a cross 
product of an interval for g .  (yielding the term) 
and a dimension k - 1 region for U (the UikT*)/k term). 
To compare all three performance expressions (pyramid 
VQ, UVQ, and optimum VQ) we plot the gain in mse 
performance of each over scalar quantization. For the 
same resolution a scalar quantizer has performance 

mse,,,,,, = 4 . 5 N - 2 / k ,  
so Fig. 2 shows versus dimension k the gain in dB 

msescalar 4.5 
lolog,, ~ = lolog,, ~. 

mse VQ mSeVQ 

For the unrestricted VQ we present the gains using the 
A k - 1  lattice and Conway and Sloane’s [9] best lattice 
( U k - ,  = G k - l ) .  In the limit of large k the optimum VQ’s 
performance gain approaches 7.16 dB while the UVQ , 
with the A k - 1  lattice, and the pyramid VQ approach 5.63 
dB (the 1.5 dB loss is due to poor performance of that 
lattice). For small dimension, the UVQ’s performance is 
better than that of the pyramid VQ. Further, the UVQ’s 
performance varies little with lattice choice. For higher 

IV. DESIGN AND IMPLEMENTATION ISSUES 
To design and implement the UVQ’s we must further 

address three issues: projection onto a k - l ( g )  as in Step 
3), implementation of the lattice VQ for U, and selection 
of the VQ’s parameters for finite N. Since the A,, lattice 
has excellent performance for small dimension, we limit 
much of our discussion to this case only. 

If we desire to use a general lattice VQ for U on 
ak- , ($)  we must first project U onto a k - , ( g )  if g > g. 
The reason is that if our input vector falls outside the 
simplex, the uniform VQ algorithm [lo] might map U onto 
a quantization codevector also outside the simplex and, 
hence, not in our codebook. This projection can be 
achieved by sequentially projecting U onto the lower 
dimensional faces of a,-,($). For the A,,-, lattice this 
step is subsumed into the VQ algorithm described next. 

As previously noted, a translate of the A k - ,  lattice is 
characterized by points y = [ y,,  . . . , yk] with 

y E Z k  such that yI = m ,  

where m is an integer. We notice that, if one scales the 
VQ input x by m/g^, then our simplex a k - l ( g )  for U lies 
within the hyperplane of this lattice. The k vertices of the 
simplex are lattice points and have coordinate representa- 
tions which are the k permutations of the vector 
[ m, 0, * - e ,  01. Further, with the scaling by m, any one edge 
of this simplex contains exactly m + 1 evenly spaced lat- 
tice points. Realizing this we can develop a relationship 
between m and the total number of VQ points on P k .  

From [ l l ,  pp. 120-1211 there are 2d+1 d : l  d-dimen- 
sional faces on the polytope P k .  The number of lattice 
vectors interior to each face is ( for m > d (zero 
otherwise). Combining these, the total number of vectors 
on P k  as a function of k and m is 

k 

1 = 1  

0 

k - 1  number of 

d = O  

k - 1  

(7) 
d = O , d < m  

The overall VQ algorithm, then, is a slight modification 
of that in [13] in that we select m based upon the result of 
the gain quantization: 

1) let g = Cf=,lxil, quantize g to g, look up m(g); 
2) replace each x i  by 

a perpendicular projection onto the Ak-1 lattice 
hyperplane at distance d from the origin; 

3) let yi = xi x m($) /g;  
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4) round each yi to the nearest integer in the set 

5 )  IF T = m, THEN GO TO Step 6), 
{0,1,2,-. .,m(b)}, compute T = Cf=,yi;  

IF T > m, round an additional T - m(B) yi's down 
by 1, 
IF T < m, round an additional m($)- T y i s  up by 1; 

6) restore the sign of each coordinate, i.e., yi = 

sgn(xi) x yi; 
7) ii = yi x $/m(&?). 

Between Steps 6) and 7) of the VQ algorithm, it is 
common to encode and decode the value for transmis- 
sion/storage over a channel. We require then a method 
of encoding the yi onto an integer between 1 and N = 2kb. 
Our approach, described next, is a minor variation of 
enumeration encoding given in [13]. 

A. Encoding 

The problem is: Given y = [y , ,  y2; . ., yk] with 
k c I Y i l = m ( i ) ,  

i = l  

find a unique index z ,  z E {1,2,. e ,  N } .  Assume that we 
assign indexes to the VQ vectors sequentially over the 
concentric cross polytopes x P k  starting with the inner- 
most shell. The overall index of a particular codevector 
can then be written as an offset 0, due to the points on 
all interior shells plus the position index, Po, on the 
current shell: 

index of y = O,( $) + Po( y ) .  

Note that this offset for a codevector on the j th shell of 
magnitude f j  is given by 

j - 1  

OO( &) = c Nu( ti) , 
i = l  

and that the position, Po, on the current shell is an 
element of {1,2; e ,  N,,(k,)}. 

The position on the shell can be written as the sum of 
an offset 0, due to all codevectors with smaller values of 
y,  plus the position P, of the point of interest within 
those codevectors on the shell with the given y ,  value: 

Po($)  = O , ( ~ ( $ ) , Y l ) +  P , ( Y ) .  

This second offset can be found as 

0, = '5' (number of ways that c Iyil=m( g) - I jl . I k 

j = - m ( g )  i = 2  

Similarly, we can find P, as an offset of all codevectors on 
the shell with the given y1 value and y2  less than but not 
equal to the given value, plus another position. Continu- 
ing, the overall index for any point can be written as 

k 

index = 0, + Oi, 
i = l  

TABLE I 
LOOKUP TABLES FOR THE FOUR-DIMENSIONAL, RATE 3 (A' = 4041) 

UVQ: THE GAIN QUANTIZER'S PARAMETERS AND THE 6, 
USED IN THE ENCODING STEP 

~ 

i $, g, m($,)  ~,(g,)  j 6,Cj) d2(i) d3(j) 
1 0. 0.12 0 0 0  1 1 1  
2 0.18 0.36 2 1 1  7 5 3  
3 0.51 0.71 4 33 2 25 13 5 
4 0.89 1.1 6 225 3 63 25 7 
5 1.3 1.6 6 833 4 129 41 9 
6 1.8 2.2 7 1441 5 231 61 11 
7 2.5 3.1 7 2393 6 377 85 13 
8 3.4 4.5 6 3345 I 575 113 15 
9 5.1 m 3 3953 

where, for i = 1,2; ., k - 1, 

0. = '5' {number of ways that 
; = - (m(%)-  ,EL;lY,l) 

k i - 1  

Iy,I = m ( t )  - C IYJ-  ljl 
p = i + l  q = l  

and 
1,  Y , 1 0 ,  

O.=( 2, Y k > O .  

A simpler way to compute-these offsets is as follows. 
First, define the functions O,( j )  ( i  = 1,2,. * *,  k - 1, j = 

0,1,2,3; -,max{m(2)) by 
k - 1  

6,( j )  = number of ways that lxpl I j ,  
p = l  

each x, an integer. 

Notice that we can define these recursively as 

d,(0) = 1, 
1-1  - 

dk-,(  j )  = 1 +2j ,  and 6n- j )  = dn( j )  + 2 c On( P). 
p = l  

The original offsets can then be found as 

oi(Y1,...,Yk) 

0, y, I 0 and b, = 0, 

= d L ( b l - l ) ,  y , ~ O a n d b , > O ,  I ( 6 , - ~ ( b , - , ) - 6 , - l ( b , - , - l ) ) - 6 , ( b , ) ,  Y,>0, 

where b, = m($)-  Clp=,Iyp( (b, E {0,1;. ., m($))) and 
Go(.)- 6,(.) is interpreted as the number of points on 
the j th shell. For simplicity of implementation of both the 
encoder and decoder, the values of 0, should be tabu- 
lated. 

As an example, we consider the dimension four, rate 3 
( N  = 4041) UVQ designed using the approach of the next 
section. This UVQ has 9 concentric shells. The offsets 
0,, the g quantizer's parameters, and the O,( . )  appear in 
Table I. The encoding of the point y ,  = 2, y 2  = -2, 
y, = 0, y, = 3 (m = 7) on the sixth shell starts with 
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0,(6) = 1441. Next, 

b, = 7- (2) = 5 

b, = 7- (2+ 2) = 3 

b3 = 7- (2+  2+0)  = 3 

+ 0, (2393- 1441) -231 = 721, 

+ 0, = 13, 

+ 0, = 5 ,  
and since y ,  > 0, 0, = 2. Summing, the encoded index is 
1441 +721+ 13+5 + 2  = 2182. 

Decoding is the reverse operation: given the index, find 
that offset nearest to but less than the index. Subtract this 
value and search over the next offset. For example, to 
decode the previous example of index equal to 2182, we 
start by selecting that value of 0, < 2182 to determine 
that our point is on the sixth shell. This gives us the value 
m ( $ )  = 7 from the first lookup table. To continue, we 
subtract the shell offset from the index 

Po = index - 0, = 2182 - 1441 = 741. 

We then solve for 0,. From the lookup table, 741 is 
greater than any value of 6,( j )  for j I m ( $ ) ;  hence, y, 
must be greater than zero. In that case, the position must 
exceed 952 (the number of points on the sixth shell) 
minus the 6,(b,)  entry; i.e., b, = 5 (741 > 952-231 = 721) 
and y1 = m ( $ ) -  b, = 2. Continuing, the remaining posi- 
tion is now P, = Po - 0, = 741 - 721 = 20. We can find 
b, = 3 from the table (the j = 2 entry); hence, y ,  = -2. 
Now, P , = P , - 0 , = 2 0 - 1 3 = 7 ,  so b 3 = 3  ( j = 2 )  and 
y ,  = 0. Finally, the remaining index is 7-5 = 2 so y4 > 0 
and equals m ( $ ) -  Iyll- Iyzl- ly31 = 7-(2+2)= 3. 

TABLE I1 
COMPARISON OF IMPLEMENTATION COMPLEXITY OF SEVERAL VQ’s 

Type of VQ Number of Operations Amount of Memory 

Scalar quant. O M )  o ( 2 b >  
Unstructured VQ O(k2kb)  O(k2kb)  

UVQ O(k + 2 b )  O ( k 2 b )  
(full search) 

search, which computes and compares the distances to 
each output. Thus the encoder requires a table of the 
outputs and the computation of the distance to each. The 
outputs, each filling k locations, require a memory with 
k2kb storage locations. Each distance computation in- 
volves k subtractions, k multiplies (squaring), and k - 1 
additions. Finally, 2kb - 1 scalar comparisons yield the 
closest output. For the decoder, one lookup in a table of 
the 2kb codevectors is required (see Table 11). This expo- 
nential growth (in both k and b) motivated research into 
lower complexity search algorithms [2], [SI, tree search 
VQ’s [7], multistage VQ’s [16], and product code quantiz- 
ers [261. 

The complexity of the UVQ’s implementation is more 
involved to compute. The full algorithm for the Ak-1 

lattice UVQ (including the encoder and decoder) previ- 
ously described in this section requires approximately 
16k + 210g, N, +max{m(i)) scalar operations (additions, 
multiplications, comparisons, table lookups, etc.) and 
13N, + max{m( 8)) scalar storage locations. Experimental 
observation that both N, and the maximum m ( k )  are 
proportional to 2’ yields-the estimates listed in Table 11. 

C. Finite N 
B. Complexity 

Besides designing for the best performance, we must 
consider implementation details of the VQ. Any VQ can 
be divided into two operations, an encoder and a decoder, 
a model useful when comparing complexity of implemen- 
tation of several schemes. Since this is an important issue 
in VQ design, we compare the computation and storage 
requirements of the implementation of scalar, unstruc- 
tured (locally optimum) vector quantizers, and our UVQ 
for the length k vector input. 

In the scalar case, the same scalar quantizer is em- 
ployed k times. At a rate of b bits per sample, this scalar 
quantizer has 2’ intervals as its quantization regions. 
Encoding a scalar input is accomplished by comparing the 
input to the interval endpoints in a binary tree fashion. 
Such an operation requires b comparisons and b table 
lookups (of the interval endpoints) per input scalar. In 
total, the implementation of the scalar quantizer’s en- 
coder for a vector of length k requires 2 b - 1  storage 
locations (for the endpoints) and 2kb scalar operations 
(comparisons and lookups). For the decoder, k lookups in 
a table of the 2b scalar quantizer’s output values are 

The asymptotic results already presented demonstrate 
the performance gain of the UVQ’s. For finite N ,  the 
relevant question is: How do we design the W Q ?  

Previously [31], [34] we have presented example UVQ’s 
for the dimension two Laplace source for finite bit rates. 
The resulting quantization patterns (on the -bivariate 
plane) closely resemble the optimum VQ’s found using 
the LBG algorithm [12]. In this case the mse expression 
for the VQ can be written explicitly in terms of the 
quantizer parameters and optimized by a Lloyd method I 
approach [ 191. Although nonlinear and coupled, the par- 
tial derivative expressions can be solved numerically [34]. 
The gains in performance over scalar quantization [21], 
[23] for 2, 3, and 4 bits per dimension are 0.68, 1.47, and 
1.78 dB, respectively. Unfortunately, for k > 2, the geom- 
etry of the quantization regions becomes too complex to 
allow a simple, exact, finite N design algorithm. Clearly, 
one solution is to employ the asymptotic results directly; 
i.e., given k and N = 2kb: 

required. These counts of scalar operations and scalar 
storage locations are summarized in Table 11. 

For a typical unstructured VQ, b bits per sample yields 
a total of kb bits or 2kb outputs. Since the vectors are not 
ordered as in the scalar case the encoder is often imple- 
mented by a straightforward technique, called a full 

evaluate N, from (A7); 
inverse sample the compressor h of (A9) at N, uni- 
formly spaced points for the gL; select the g thresh- 
olds as midpoints of the g l ,  
evaluate the Nu($,) using (AS) and round to allow- 
able values of Nu that satisfy the constraint in (7). 
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TABLE 111 
DATA FOR A N = 57, THREE DIMENSIONAL W Q  

1 o.Oo0 0 1 0  0.000 
2 1.043 31 18 2 0.3789 0.6973 
3 3.285 33 38 3 1.337 1.793 

Unfortunately, this method results in poor performance 
unless the per dimension bit rate is high (e.g., b 2 8). The 
major reason for this is that the asymptotic analysis ig- 
nores the effects of regions on the boundaries of the faces 
of Pk. Specifically, the previous analysis assumes that all 
of the regions are of equal size and contribute equally to 
the error while for small N these boundary regions are 
larger than the rest and dominate the error expression. 

A finite N algorithm is developed in the Appendix that 
does provide good VQ performance for lower bit rates. If 
one makes an initial choice for Ng and the Nu($) (using 
the asymptotic results), the performance is then a func- 
tion of only the gain quantizer’s parameters. Taking 
derivatives, the result is a pair of Lloyd/Max equations 
[19] for the g quantizer: 

and 

where 

and y k - l  is constant dependent upon the particular lat- 
tice VQ employed. For the A k P l  lattice 

These expressions assume that the innermost pyramid has 
multiple quantization points. If we consider a single small 
region centered at the origin (gl = O), the expression for 
g2 becomes 

For example consider the results for k = 3 and N = 64 
( b  = 2)  in Table 111. Evaluating the asymptotic expression 
(A71 and rounding to the nearest integer yields Ng = 3. 
We will consider the case of a representation vector at 
the origin. Sampling h-’  at 0, 2 / 5 ,  and 4/5 yields the ki 
(column 2). Next, we sample Nu(g)  at the ki and round to 
integers that sum to 64 to get approximations to the 
Nu($> (column 3). We then select Nu for integer m 
(columns 4 and 5). We note that the total is N = 5 7  
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TABLE IV 
SIMULATION RESULTS OF PERFORMANCE (GAIN IN dB OVER SCALAR 

QUANTIZATION) FOR VARIOUS Low DIMENSION ( k ) ,  
MODERATE BIT RATE ( b )  LAPLACE UVQ’s 

k b  2bk Actual N N, SNRGain 

2 2  16 16 2 0.68 dB 
3 2  64 57 3 1.45 dB 
4 2  256 209 4 1.58 dB 
5 2  1024 950 3 1.93 dB 
2 3  64 64 5 1.47 dB 
3 3  512 511 8 .  2.37 dB 
4 3  4096 4041 9 2.53 dB 
5 3  32768 31050 9 2.73 dB 
2 4  25 6 256 11 1.78 dB 
3 4  4096 4096 14 2.85 dB 
4 4  65536 65504 17 3.12 dB 
5 4 1048576 1031381 19 3.39 dB 

regions. Unfortunately, this VQ has poor performance; its 
mse is larger than that of scalar quantization. To improve 
performance we need to reselect the g quantizer and, 
possibly, vary the Nu(i). Keeping the Nu(i) fixed and 
iterating over gi and $i with the expressions above yields 
the data in columns 6 and 7. The performance of this VQ 
(by Monte Carlo simulation) is 1.13 dB better than that of 
scalar quantization. Results of several other example 
UVQ’s for low dimension and moderate bit rates appear 
in Table IV. 

V. CONCLUSION 
This paper has presented asymptotic (high bit rate) and 

finite N design and performance analyses for an unre- 
stricted VQ for the independent Laplace source. For the 
restricted form (the pyramid VQ), this paper provides 
further implementational information and low dimension 
analytical results. The introduction of the unrestricted 
format allows us to use lower dimension yet achieve 
similar gains in mse performance. 

Normally, when discussing VQ schemes, the question 
of implementational complexity is discussed. It was shown 
that the UVQ’s complexity (gain quantization, U quanti- 
zation, encoding and decoding) is significantly smaller 
than that of the locally optimum VQ’s typically designed. 

APPENDIX 
This appendix presents an analysis of the unrestricted 

VQ based on Helmert’s transformation for an i.i.d. 
Laplace source. Both asymptotic and finite N analyses 
are presented along with the restriction to a product code 
pyramid vector quantizer. 

For a dimension k source x with probability density 
function f ( x ) ,  the mse due to quantization is 

Here, we are concerned with a source modeled by the 
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i.i.d. Laplace probability density function Substituting these two results, 

and quantization of the variables from Helmert’s transfor- 
mation +- Nu(i) x inertia {Sk- 1( &)}]2k/2e-fig dg . 

2k 

Let UkPl be the inertia of a normalized (unit volume) 
version of the typical quantization region of the k - 1 
dimensional lattice VQ for U on a,-@). Since we are in 
dimension k - 1 we note that scaling the region by a 
constant a changes the volume by ak- l  and the mse by 
ak+’. Together these yield 

1 k  
g = Ji; iFl IXiL 

= . . , k - c l q l - . h j + 1 I  , 

(k  + l)/(k - 1 )  

i j  1 1 
U .  = 
’ d m  i = l  

We call g the gain coordinate and U =[U,; * * , u ~ - ~ ]  the 
location vector on the polytope P k .  Changing coordinates 
we note that Helmert’s transformation is orthogonal; the 
mse expression becomes 

iner t ia{~, - , ( i ) ]  = u,-1[vol {Sk-l( g)}] 
This result and the volume expression 

- result in 
.2k /2e- \ /2kg  du dg , 

1 m  kk/’gk-’ Nu( g^)uk-1 
2k with a k -  l(g) a regular simplex with edge length &%g. mse = [ ( g  - i )  ( - ! + 

To simplify this mse expression, we begin with the inner 

(k + l)/(k - 1) 2 k / 2  e-figdudg. 1 integration over the u j ,  

‘ fVo1 IS,- 1( i )  11 

A. Asymptotics 

To simplify notation for the asymptotic analysis (as 

;I k - 1  

( g - i ) ’ +  (ui-c , )  du. (A.l)  Lgl j =  1 

The first term of this integral can be integrated directly, 

Since U is uniformly distributed over (Yk-l(g), the second 
term of (All  is proportional to the error power due to the 
U quantization; equivalently, it is the total inertia of the U 
quantization regions on a k -  ,(g) about their respective 
output vectors. As an approximation to this error power, 
we assume that the uniform lattice VQ for U has congru- 
ent quantization regions; hence, we need only consider a 
typical region on the gain quantized cross polytope P k ( $ ) .  

Let Nu($) represent the number of quantization regions 
for U on P k ( d ) .  Although we actually quantize on (Yk-l(i), 
one face of P k ( i ) ,  it is often useful to imagine the total 
partitioning of the input space into its N regions. Since 
there are 2k such faces, we have 2-kNu(g) regions on the 
face a k - l ( i ) .  Another way to understand this reduction 
(by 2k> is that we must spend k bits to keep the signs of 
the x, for the inverse of Helmert’s transformation. Let 
Sk-l($) represent the typical quantization region for U on 
& k - l ( i ) .  Ignoring the effects of the edges of &&I($), the 
second term of (Al) is approximately equal to the number 
of regions times the inertia of each region, 

N+w), we will replace the sequence Nu(g)  by a levels 
allocation function Nu(g) and the regions Sk-,(g) by 
SkF1(g). Further, we assume that the volume of ak-l(g) 
is divided evenly amongst the 2-kNu(g) regions 

This yields 

gk-’e-figdg. (A.2) 
(2k)k’2 

k! 
.- 

To continue the asymptotic analysis we invoke a standard 
asymptotic technique: replace the nonuniform scalar 
quantizer for g by a compandor system [31. We will 
assume a compressor function h,  expandor h-’, and N, 
levels in the scalar uniform quantizer. The first term in 
the error integral (A.2) is replaced by a standard com- 
pandor approximation 



SWASZEK V E a O R  QUANTIZATION FOR LAPLACE SOURCE 1363 

where f ( g )  is a density function. The result is 

( k  -1 ) (2k>” / ’Uk- ,  ( , 2 k k k / 2  j 2 / ( k - 1 )  
k !  ( k  - l ) !  

+ 

We can interpret this mse expression as Bennett’s integral 
[3] for the vector quantizer which can be evaluated for a 
particular set of compressor function, h(g) ,  levels alloca- 
tion function, NJg), and g resolution, N,. 

B. Pyramid Vector Quantizers 

For the pyramid vector quantizer, N,(g) is a constant 

For fixed values of k and N, the mse is a function of and 
can be optimized over the choice of the gain compressor, 
h(g) ,  and the gain resolution, Ng,  

( 2 k )  k / 2  g k -  l e -  f i g  

dg mse -= - 
12k!N,‘ Ih‘( g)12 

g e- f ig  d g .  . /org* + IN- 2 / ( k  - 1 ) ~ 2 / ( k  - 1) 

Since h appears in only one term, the obvious choice for 
the compressor is Smith’s result [28] 

We note that in introducing the pyramid VQ’S, Fischer 
[13] employed a Gaussian (Max-Lloyd) quantizer for g .  
Here we will continue using the best compressor as be- 
fore and expect that our performance will be slightly 
better than Fischer’s. Also, our result is for any lat- 
tice VQ; as discussed in the text, Fischer employed the 

and 
( k - l ) / k  2 / k  

msePyramidVQ = 6 [ ( k + 1 ) k U k - l ]  3 

C. The Unrestricted VQ 

In our quantization problem, the total number of repre- 
sentation points in !Ytk is a fixed constant N .  As a 
function of the choices of Ng and this can be 
written as 

N8 c Nu( i r )  = N. ( A . 4 )  
r = l  

We wish to approximate this constraint equation for large 
N. Let a typical interval in the scalar quantizer for g have 
endpoints g, ,  g r + l  and representation level ir. For large 
N, the width of this interval, Ag,i, can be related to the 
slope of the compressor function h ( g )  

1 1 
g , + l - g . = A  . =  or - = h’( $i)Ag, i .  ( A S )  N$’( t i )  Ng 

Dividing both sides of (A.4) by Ng and employing the 
approximation of (A .5 )  yields the constraint 

N Ng 
--= c N u ( i r ) q i J A g , ,  = p u ( s ) h ’ ( s ) d g .  ( A . 6 )  
N, r = l  

With this integral constraint we can minimize the VQ’s 
mse over the choice of the g quantizer’s resolution, N,, 
and compressor, h ( g ) ,  and the levels allocation function, 
Nu(g). The following sequence of steps yields optimum 
choices for these functions: 

append the constraint in (A.6)  with a Lagrange multi- 
plier to the mse expression of (A.3)  and use Euler’s 
equation (calculus of variations) to choose NJg 1. 
Scale the result to satisfy (A.6); 
substitute N J g )  into the mse expression and opti- 
mize over the scalar parameter Ng by amse/aN, = 0; 
substitute Ng into the mse and use Holder’s inequal- 
ity to choose h ( g )  for minimum mse (hint: use p =  
k + 2). 

After much manipulation, the optimum choices are 
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With these choices the mse is 

D. Finite N -  For any Lattice 

To develop an iterative Lloyd-type algorithm we return 
to an expression for the mse from before the asymptotic 
analysis: 

The expression for the volume of ak- , (g )  is the same as 
before; however, rather than dividing (Yk- l ( g )  evenly 
amongst the 2-kNu(g)  regions to find the inertia of 
Skp1(g ) ,  we consider its inertia more precisely. For any 
lattice structure, since the size of S,- , (g)  depends upon 
the size of (Yk-l(g), we can write 

with Y ~ - ~  being a constant dependent upon the lattice 
type. Simplifying the mse expression yields 

where 

To continue we extract the term gk- ’  from both terms in 
brackets to make the outer term look like the marginal 
density of g .  Note that to do this we approximate i by g 
in the second term 

Separating into individual intervals on g yields 

where we have indexed the 6 by i since the factor 
depends upon the individual U resolutions. This is the 
expression from which we develop the standard Lloyd 

method I iteration: 

a /ag ,  = 0 yields 

a / a g i  = 0 yields 

Similarly we can consider the case of a single small region 
centered at the origin (il = 0). In this case equating the 
partial derivative with respect to g ,  to zero yields 
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