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ABSTRACT

Two-dimensional Gaussian blur operations are used in many image processing applications. The execution times of these
operations can be rather long, especially where large kernels are involved. Proper use of two properties of Gaussian blurs can
help to reduce these long execution times:
1. Large kernels can be decomposed into the sequential application of small kernels.
2. Gaussian blurs are separable into row and column operations.
This paper makes use of both of these characteristics and adds a third one:
3. The row and column operations can be formulated as finite-state machines (FSMs) to produce highly efficient code and,

for multi-step decompositions, eliminate writing to intermediate images.

This paper shows the FSM formulation of the Gaussian blur for the general case and provides examples. Speed comparisons
between various implementations are provided for some of the examples. The emphasis is on software implementations, but
implementations in pipelined hardware are also discussed. Straightforward extensions of these concepts to three- and higher-
dimensional image processing are also presented. Implementation techniques for DOG (Difference-of-Gaussian filters) are
also provided.
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1. INTRODUCTION

A wide range of low-pass filtering operations are used in image processing – low pass in the sense of passing low spatial
frequencies and rejecting high spatial frequencies. These are usually given names suggesting smoothing, averaging, or
blurring. One of the most widely-used operations of this type is the so-called Gaussian blur, which has the advantages of
being very “smooth” and also circularly symmetric, so that edges and lines in various directions are treated similarly. For
digital image processing, blurring operators are often defined on small neighborhoods (e.g., 3x3, 11x11), and a small finite
number of grey levels (e.g., 256). In such cases, the ideal Gaussian “bell curve” must be approximated by a few integer
values. The values usually used are based on Pascal’s triangle (the binomial coefficients. These approach the true Gaussian
curve more and more closely as the number of points increases:
Index N Coefficients Sum of coefficients = 2N

0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64
7 1 7 21 35 35 21 7 1 128
8 1 8 28 56 70 56 35 8 1 256
9 1 9 36 84 126 126 84 36 9 1 512
10 1 10 45 120 210 252 210 120 45 10 1 1024
11 1 11 55 165 330 462 462 330 165 55 11 1 2048

These coefficients have the very useful property that the set for N = k can be obtained by convolving the set for N = i with
the set for N = j, where k = i + j. For example, the set for N = 7 can be obtained by convolving [1  3  3  1] with [1  4  6  4  1].
The absolutely crucial implication of this is that repeated applications of small-neighborhood Gaussian blurs can achieve
large-neighborhood Gaussian blurs. These results are exactly equivalent, except for the accumulated rounding errors due to
the successive operations. This is true for one-dimensional Gaussian operators as well as for two-dimensional operators and
all higher dimensions.
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Two-dimensional Gaussian blur operations are used in many image processing applications. The execution times of these
operations can be rather long, especially where large kernels are involved. Proper use of two properties of Gaussian blurs can
help to reduce these long execution times:
1. Large kernels can be decomposed into the sequential application of small kernels, as indicated in the paragraph above.
2. Gaussian blurs are separable into independent row and column operations.

For example, the 3x3 Gaussian blur operator
1 2 1 1
2 4 2 is exactly equivalent to 1 2 1 followed by 2 .
1 2 1 1

Alternatively, the row and column operators can be interchanged, with identical results.

This paper makes use of both of these characteristics and adds a third one:
3. The row and column operations can be formulated as finite-state machines (FSMs) to produce highly efficient code.

Furthermore, for multi-step sequential decompositions, the necessity of writing results to intermediate images and then
fetching these results for the next operation is eliminated.

2. THE BASIC 2X2 OPERATION

Figure 1 shows the simplest possible two-dimensional operator, the 2x2
blur, which has rows [1  1] and [1  1], implemented using the SKIPSM
(Separated-Kernel Image Processing using finite-State Machines)
paradigm. (Please see References 1 through 20 for background
information on SKIPSM.)

This implementation requires one memory location or register for the
state of the row machine SR0 and a column state buffer SC0[i], i = 1, 2,
… NPixels, where NPixels is the number of pixels in an image row. The
column state buffer is set to zero at the start of the overall operation,
and the row state buffer is set to zero at the start of each row.

For this example and all the others to follow, each image pixel is fetched once
and only once. For each pixel, the main loop code shown below is executed
once. There are no other steps. The output can be written back onto the input
image, if desired, because all the information needed to compute the output is
contained in the state buffers.

Step Main Loop Code Comments
1 Tmp1 = Input[j][i]; // Fetch the next input pixel
2 Tmp2 = SR0 + Tmp1; // Form the row machine output
3 SR0 = Tmp1; // Update the row state buffer
4 Output[j][i] = (2 + SC0[i] + Tmp2)/4; // Form and scale the output
5 SC0[i] = Tmp2; // Update the column state buffer

This 2x2 SKIPSM implementation uses five steps (or six, if one counts step 4 as two steps), whereas a pure “brute force”
implementation would use nine (four dual-index pixel fetches, three additions, one scaling step, and a dual-index “write” to
the output image). In this case, the SKIPSM result is not particularly impressive. The real advantages of SKIPSM increase as
the size of the operator increases. And, of course, nobody is likely to use something as cumbersome as the brute force
approach. (Note: The addition of the value 2 in Step 4 provides for rounding to the nearest integer.)

3. LARGER BLURS: 3X3 AND 5X5

This implementation requires two temporary variables, one memory location or register for the state of the row machine
(SR0), for images with NPixels in each row, a column state buffer SC0[i], i = 1, 2, … NPixels. The 3x3 implementation
requires two temporary variables, two memory locations or registers for the state of the row machine, SR0 and SR1, and two
column state buffers, SC0[i] and SC1[i]. The column state buffers are set to zero at the start of the overall operation, and the
row state buffers are set to zero at the start of each row. The main loop code is given below. The output is written to address
[j-1][i-1] because this is the center of the current 3x3 neighborhood.
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Figure 1. SKIPSM implementation of
the 2x2 Gaussian blur operator.



# Main Loop Code for 3x3 Gaussian blur
//  Row machine

1 Tmp1 = Input[j][i]; // Fetch the next input pixel
2 Tmp2 = SR0 + Tmp1; // Form the intermediate value 
3 SR0 = Tmp1; // Update 1st row state buffer
4 Tmp1 = SR1 + Tmp2; // Form the row machine output 
5 SR1 = Tmp2; // Update 2nd row state buffer

//  Column machine
6 Tmp2 = SC0[i] + Tmp1; // Form the intermediate value 
7 SC0[i] = Tmp1; // Update 1st column state buffer
8 Output[j-1][i-1] = (8 + SC1[i] + Tmp2)/16; // Form the output
9 SC1[i] = Tmp2; // Update 2nd column state buffer

Thus, the 3x3 SKIPSM implementation requires 9 steps. The brute-
force approach for this case requires 24 steps (9 dual-index pixel
fetches, 5 multiplies, 8 additions, one scaling step, and a dual-index
“write” to the output image).

The 5x5 implementation requires two temporary variables, four
memory locations or registers for the state of the row machine, SR0
through SR3, and four column state buffers. The column state buffers
are set to zero at the start of the overall operation, and the row state
buffers are set to zero at the start of each row. The main loop code is
given below. The output is written to address [j-2][i-2] because this is
the center of the current 5x5 neighborhood. See Figure 3.

Step Main Loop Code for 5x5 Gaussian blur
1 Tmp1 = Input[j][i];
2 Tmp2 = SR0 + Tmp1;
3 SR0 = Tmp1;
4 Tmp1 = SR1 + Tmp2;
5 SR1 = Tmp2;
6 Tmp2 = SR2 + Tmp1;
7 SR2 = Tmp1;
8 Tmp1 = SR3 + Tmp2;
9 SR3 = Tmp2;
10 Tmp2 = SC0[i] + Tmp1;
11 SC0[i] = Tmp1;
12 Tmp1 = SC1[i] + Tmp2;
13 SC1[i] = Tmp2;
14 Tmp2 = SC2[i] + Tmp1;
15 SC2[i] = Tmp1;
16 Output[j-2][i-2] = (128 + SC3[i] + Tmp2)/256;
17 SC3[i] = Tmp2;

Thus, the 5x5 SKIPSM implementation requires 17 steps. In
comparison, the brute-force approach for this case requires 72
steps (25 dual-index pixel fetches, 21 multiplications,  24
additions, 1 scaling step, and 1 “write” to the output image).
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Figure 2. SKIPSM implementation of the 3x3
Gaussian blur operator.
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Figure 3. SKIPSM implementation of 
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Six implementations will now be compared with respect to the number of code steps required for odd values of N. The
“brute-force” approach  is included for comparison, ever though nobody would use it. Instead, they would use either a
decomposition or repeated applications of a smaller blur – typically 3x3. 

method pixel fetches multiplications additions scaling write total
NxN brute force N2 N2 - 4 N2 -1 1 1 3*N2 - 3
3x3 brute force, (N - 1)/2 times — — — — — 12*N-12
Nx1 and 1xN decomposition 2*N 2*(N - 2) 2*(N - 1) 2 2 6*N - 2
decomposed 3x3, (N - 1)/2 times — — — — — 8*N - 8
NxN SKIPSM — — see sample code — — 4*N - 3
3x3 SKIPSM, (N - 1)/2 times — — — — — 9*(N-1)/2

Here are the results for NxN Gaussian blurs, for various odd values of N:

Number of main-loop steps for N = 3 5 7 9 11 13 15 17 19 21 23
NxN brute force 24 72 144 240 360 477 672 864 1080 1320 1584
3x3 brute force, (N - 1)/2 times 24 48 72 96 120 144 168 192 216 240 264
Nx1 and 1xN decomposition 16 28 40 52 64 76 88 100 112 124 136
decomposed 3x3, (N - 1)/2 times 16 32 48 64 60 96 112 128 144 160 176
NxN SKIPSM 9 17 25 33 41 49 57 65 73 81 89
3x3 SKIPSM, (N - 1)/2 times 9 18 27 36 45 54 63 72 81 90 99

It can be seen that the repeated application of the small SKIPSM operator is almost as good as integrating all the steps into
one SKIPSM operator, and that either one is much better that either the brute-force implementations or the decompositions.
In fact, the one-step SKIPSM algorithm is even better than this makes it appear, because not only does it eliminate the
writing to and reading from intermediate images (which are included in this tally), but it eliminates the extra overhead
required by the separate double main loops used for each individual pass (which are not included in this tally).

Finally, another real advantage of using the combined SKIPSM approach is in the elimination of rounding errors. By
postponing any rounding/scaling step until the end of the operation, full precision is maintained throughout, the Gaussian
ideal is approached more closely,  and the rather crude approximations involved in small kernels are avoided completely.

4. NON-SQUARE GAUSSIAN BLURS

There is no reason to limit oneself to square operators, or to odd-numbered ones either. Any size row machine can be used
with any size column machine. (The only difficulty comes with
deciding where to put the result when N is even.) For a SKIPSM
blur operator with N columns [(N - 1) row states] and M rows [(M
- 1) column state buffers], the number of main loop code steps
becomes 1 + 2*(N - 1) + 2*(M - 1) = (2*N + 2*M - 3).

Figure 4 shows a blur operator with 5 columns and 3 rows. As
predicted, it has 13 main loop steps. Generalization to other sizes
and shapes is very straightforward.
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Figure 4. 5 column-by-3 row Gaussian blur operator

Main loop code for 3x5 Gaussian Blur
Tmp1 = Input[j][i]
Tmp2 = SR0 + Tmp1; 
SR0 = Tmp1;
Tmp1 = SR1 + Tmp2; 
SR1 = Tmp2;
Tmp2 = SR2 + Tmp1; 
SR2 = Tmp1;
Tmp1 = SR3 + Tmp2; 
SR3 = Tmp2;
Tmp2 = SC0[i] + Tmp1; 
SC0[i] = Tmp1;
Output[j-1][i-2] = (32 + SC1[i] + Tmp2)/64; 
SC1[i] = Tmp2;

Coefficients

1 4 6 4 1

2 8 12 8 2 ÷64

1 4 6 4 1



5. ROTATED ELLIPTICAL GAUSSIAN BLURS

It is not even necessary that the axes of non-circular blurs be aligned with the x and y axes of the image. It is possible also to
use two diagonal finite-state machines to produce elliptical blurs rotated 45 degrees with respect to these axes. Diagonal
machines were used in 15 for grey-scale erosion, and a similar approach could easily be adapted to Gaussian blurs. The
details are omitted here.

6. THREE-DIMENSIONAL AND n-DIMENSIONAL GAUSSIAN BLURS

The SKIPSM approach can be extended to 3-dimensional and n-dimensional operations without difficulty. Figure 5 shows
the result for a 3x3x3 implementation. For clarity, the notation has been changed from rows and columns to X, Y, and Z. For
this example there are three kinds of state buffers: registers SX0 and SX1 for the two X state values, two row-length buffers
SY0[i] and SY1[i] for the Y state values, and two image-sized buffers SZ0[j][i] and SZ1[j][i]. All buffers except SX0 must
have longer word lengths than the number of bits in the input image, with registers further along in the processing chain
requiring progressively more. In this case, and for 8-bit input values, the number of bits for SX0, SX1, etc. are 8, 9, 10, 11,
12, and 13, respectively. Before scaling (dividing by 64), the sum computed in step 12 can have up to 14 bits. In this case, 16
bit buffers could be used for all of these. For larger-sized operators, care must be taken to ensure that the buffer word lengths
are sufficiently large, especially toward the end of the processing chain.

As with 2-D SKIPSM, the number of main loop steps required increases linearly with operator size N, whereas with
conventional approaches the number of steps typically increases proportional to Nn. See 13 for more information about
higher-dimensional processing using SKIPSM.

7. DIFFERENCE-OF-GAUSSIAN (DOG) FILTERS

Gaussian low-pass filters (Gaussian blurs) are often used in the computation of high-pass and band-pass filters. High-pass
filters are obtained by subtracting a low-pass result from the original image. Band-pass filters are obtained by subtracting
Gaussian blurs of two different sizes. These filters are called DOG (Difference of Gaussian) filters, and result in the familiar
“Mexican hat” impulse response. They are widely used (and even more widely advocated) for pattern recognition
applications. The human retina appears to have a series of DOG filters built into the retinal pre-processing. Crowley 21-23

refined DOG filters to an amazing degree, including the development very efficient computational techniques for a compact
invertible multi-band decomposition of images.
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Figure 5. SKIPSM implementation of a 3x3x3 Gaussian blur on a 3-D “image”



If a full multi-band image decomposition is desired, it would be difficult to do better than Crowley has done. But if all that is
wanted is one or a few DOG filters applied to an image, or if one can’t make use of the particular √2 bandwidth ratios
inherent in Crowley’s method, then SKIPSM provides an efficient and accurate alternative.

To facilitate discussion, the following notation will be introduced:
Let Gmxn be the Gaussian blur operator with m rows and n columns.
Let G1x1 = [1] be the identity operator.

Let G1x2 =  (1/2)   1   1 G2x1 = (1/2)
1

and G2x2 = (1/4)
1   1

1 1   1

Let * denote the convolution operation. Then Gmxn * G1x1 = G1x1 * Gmxn = Gmxn and

Gpxq * Grxs = Grxs * Gpxq = G(p+r-1)x(q+s-1). This is the property 1 of Section 1, above.

All the larger Gaussian blurs, square or rectangular, can be defined recursively in terms of the this property, using the
definitions of G1x2, G2x1, and G2x2 as starting points. All will have a sum of coefficients equal to one, when the scale factor
is taken into account.

Strictly speaking, only operators which are of the same size can be added or subtracted. Therefore, the difference G1x1 -
G3x3 is not defined. However, it will be assumed that when such a difference is needed, the smaller operator is “padded”
with zeros to make them the same size, and then the subtraction is done. Therefore, let DOGmxn-pxq represent the difference
between Gmxn and Gpxq. The usual practice is to subtract the larger-region blur from the smaller, so that the center value of
the operator will be positive.

An example: One of the simplest DOG filters, G1x1 – G3x3, has the form 
0 0 0 1 2 1  -1 -2 -1
0 1 0 – (1/16) 2 4 2 = (1/16) -2 12 -2
0 0 0 1 2 1  -1 -2 -1

The key time-saving idea in the SKIPSM implementation of DOG filters is that the results for the smaller blur, which are
obtained in the process of computing the larger blur, are set aside and saved until needed. The only difficulty here is that the
two blurs to be subtracted must be centered on the same pixel, whereas the SKIPSM algorithm produces blurs which share
the current pixel, which is at the lower right hand corner of both regions. See Figure 6. Thus, it would appear that a separate
image buffer must be used to save this result until needed. However, the pipeline timing works out just right so that this is
unnecessary, as shown in Figure 6. One word of caution: The temporary storage buffer should have sufficient word length to
store the sums involved in the unscaled smaller blur. If this can not be arranged, then the smaller-blur results must be scaled
and rounded before storage, resulting in some loss of accuracy (usually slight). Note that, here as always with the SKIPSM
approach, the scaled output results can be written back into the input image buffer, if desired, with no loss of data.
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Figure 6. Relative timing information for DOG5x5-9x9



Figure 7 shows the programming diagram for
this same example. Because the individual row
and column steps can be taken in any order, the
eight steps needed for the 5x5 blur are done first,
the result is saved, and then the operation
continues and the 9x9 blur is computed. Finally,
the result is subtracted and scaled before being
written to the output image buffer. The
intermediate buffer is here named “Temp,” but
can be the input buffer, the output buffer, or some
other buffer. Other sizes can be obtained

similarly. It is even possible to
“pick off” three or more blurs of
various sizes, so that multiple
DOG filters could be applied to a
given input image in a single pass.

8. SPEED COMPARISONS

In order to demonstrate the advantage of SKIPSM for implementing Gaussian filters, a comparison was made with two other
approaches for implementing this function. The brute force technique used the 5x5 kernel given in Table 1. In order to get a
filtered pixel value, 25 multiplications and 24 additions are needed. The other approach used two one-dimensional kernels
with values given in Table 2. Here the two-dimensional Gaussian kernel has been decomposed into the two given one-
dimensional kernels, which can be applied in either order.

1 4 6 4 1 1 4 6 4 1 1
4 16 24 16 4 4
6 24 36 24 6 6
4 16 24 16 4 4
1 4 6 4 1 1

Table 1. Standard 5x5 convolution kernel Table 2. Decomposed convolution kernels

Each program was compiled using the DOS port of GCC (DJGPP) using -O3 for optimization. No attempt was made to use
the special Pentium® compiler with -O6 optimization but results would probably be around 10-15% faster with it.

The different approaches were all tested on a PC-compatible computer using a 166 MHz AMD K6 CPU with 512 KBytes of
secondary cache and 64 Mbytes of memory under Windows 95®. There were a number of background processes running
which may have increased times slightly but would not invalidate the comparisons since all tests were performed under the
same conditions. Given that the execution times for a single image were under a second for all of the approaches, processing
was repeated on the input image as needed so that the total time was on the order of one minute. The time for each iteration
was calculated for the three different methods and is given in Table 3.

Approach Time/Iteration
5x5 conventional convolution 919 ms
5x5 decomposition 450 ms
5x5 SKIPSM 108 ms

Table 3. Execution times for three implementations of a 5x5 Gaussian blur

As expected, implementing the Gaussian blur filter through standard convolution was relatively slow. Decomposition was
about twice as fast. But the best results were obtained with the SKIPSM approach, which was almost nine times as fast as
standard convolution. The speed advantages of the SKIPSM implementation should be even greater for larger values of N.

9. SUMMARY AND CONCLUSIONS

This paper has shown, both by analysis and example, that the SKIPSM implementation of the Gaussian blur operation
provides a significant speed increase, in comparison with conventional implementations. Thus, the pipelined recursive finite-
state machine aspect of the SKIPSM formulation provides speed increases in addition to those provided by separation. These
relative speed improvements can be expect to increase further for larger values of N.
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Figure 7. Programming diagram for DOG5x5–9x9
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