

RISC-V and Software
RISC-V 101

Nathan Egge

Software Readiness

RISC-V Software Success Today

• RISC-V has good adoption in microcontrollers
• Single purpose application
• Limited set of standard extensions needed, custom instructions
• RTOS or Bare Metal
• Control often a driving factor

• Examples
• Seagate custom SOCs in HDD
• Meta custom RISC-V video transcoding
• Nvidia using RISC-V in GPUs for 9 years!
• Billions and billions of cores shipped!

[1] https://www.hpcwire.com/2024/10/19/nvidia-google-to-speak-about-risc-v-use-at-annual-summit/

https://www.hpcwire.com/2024/10/19/nvidia-google-to-speak-about-risc-v-use-at-annual-summit/

Operating Systems

• Most systems software in C/C++ without significant specialization
• libc + syscalls good enough for POSIX support

• Examples
• Linux: Debian, Fedora, Gentoo, etc.
• Embedded: Yocto
• RTOS: Zephyr, FreeRTOS

• What percent of Linux packages are enabled?

Operating Systems

• Most systems software in C/C++ without significant specialization
• libc + syscalls good enough for POSIX support

• Examples
• Linux: Debian, Fedora, Gentoo, etc.
• Embedded: Yocto
• RTOS: Zephyr, FreeRTOS

• What percent of Linux packages are enabled?
• As of July 2024, 97% in Debian! [1]

[1] https://wiki.debian.org/RISC-V

https://wiki.debian.org/RISC-V

Linux Kernel

• Active work to enable RISC-V in Linux
• Early HWCAP feature detection, but limited to 32 long bit-vector
• RISC-V Vector 1.0 support in 6.5
• hwprobe() syscall added in 6.6
• PMU support, pointer masking, bitmanip, and others on-going

• SOC support still a challenge
• Most developer boards come with a heavily modified vendor kernel
• Requires “bring-up” to get suitable environment for development
• No generic RISC-V kernel in Debian, can still replace rootfs

Application Software

• Must “just work” on range of heterogeneous hardware
• Scale from IOT device, to laptop, to HEDT, to server class
• Multimedia: IOT camera, watch streaming video, multi-channel transcoding

• Potentially all use the same libraries

• Written in managed or interpreted languages
• Most runtimes work, but performance limited

• No or partial JIT, native .so not compiled for RISC-V, e.g. Python
• Java and Go getting performance optimizations through RISE

• Variable set of workloads, performance critical execution
• Really only one mechanism for performance, SIMD aka RISC-V Vector 1.0
• May not contain the same extensions, or same vector length

Software Readiness

• Very much application or “domain” dependent
• Do not need everything to be perfect, just enough to get work done

• RISC-V Software Ecosystem Dashboard [1]
• Attempts to catalog key software components based on

• Enabled: RISC-V base support established
• In Progress: Active development underway
• Optimized: Software performant on RISC-V
• TBD: No commitment to RISC-V enablement

[1] https://tech.riscv.org/software-ecosystem

https://tech.riscv.org/software-ecosystem

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)
• Does it run

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)
• Does it run
• Does it run correctly (unit and integration tests)

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)
• Does it run
• Does it run correctly (unit and integration tests)
• Does it run correctly on my hardware

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)
• Does it run
• Does it run correctly (unit and integration tests)
• Does it run correctly on my hardware
• Does it run correctly on my hardware with enough performance

Software Readiness

• In practice this is hard to measure, readiness can also mean

• Does it build (configure and compile)
• Does it run
• Does it run correctly (unit and integration tests)
• Does it run correctly on my hardware
• Does it run correctly on my hardware with enough performance

• Optimized software is also nebulous
• Performance often achieved over time through incremental improvements
• Unclear what the lower bound is on compute

• dav1d-1.5.0 still improving 6 years later

Toolchains

• GCC
• C/C++

• RVV intrinsics
• Inline assembly

• Many more

• LLVM
• C/C++

• RVV intrinsics
• Inline assembly

• Rust

• Cranelift
• WebAssembly and more

• Golang

• v8

• OpenJDK
• Java

Languages and Runtimes
Language Implementation Status Notes

C/C++ GCC, Clang Good RVV Intrinsics, tunings per target, autovectorization

Javascript v8, Spidermonkey Works Upstreamed, v8 wiki, spidermonkey initial support
Plenty of performance work ongoing

WebAssembly v8, Cranelift Works Upstreamed, available, plenty of work ongoing still

Go golang Good Since Go 1.16 Supports also cgo.

Rust rustc (LLVM, Cranelift) Works But no RVV intrinsics yet, no cpu features runtime detection

Python CPython, pypy Good You can run pytorch just fine, jit backend for pypy

Java OpenJDK Good Tracker, Apertus Distributes LTS for Java 11, 17, 21 and 22

Haskell GHC Works Tracker, both LLVM and NCG backends are supported

Erlang otp Works No JIT yet

https://github.com/riscv-collab/v8/wiki
https://bugzilla.mozilla.org/show_bug.cgi?id=1800431
https://go-review.googlesource.com/c/go/+/274478/4/doc/go1.16.html
https://pypy.org/posts/2024/08/pypy-v7317-release.html#risc-v-jit-backend
https://openjdk.org/jeps/422
https://gitlab.haskell.org/ghc/ghc/-/issues/16783
https://github.com/erlang/otp/issues/7498

Additional Tools
Tool Type Status Notes

GDB Debugger Works Does not print RVV registers yet

LLDB Debugger Works Less available by default

linux-perf Profiler Sort-of On some platforms only custom events are available

rr-project Debugger Missing Tracker, Could work for cpu with Zacas support

mold Linker Good Works

https://github.com/rr-debugger/rr/issues/3796

Ways to Improve Performance
Auto-vectorization
• Pros: Compiler does all the work

• Performance can get better with newer compilers
• Cons: Language and code have to give hints

• Scalar code often does not map to efficient vector operations
• Compiler support may not always be present

Intrinsics
• Pros: Code uses primitives present in the instruction set

• Same language as the rest of the code, easy to reason about and debug
• The instruction scheduling should be optimal and tuned for the target

• Cons: Compiler support may not always be present
• Intrinsic version changes force code updates 0.11 -> 0.12

Pure Assembly
• Pros: Full control, no chance of mis-compilation

• Overcome ABI limitations, not everything representable with intrinsics
• Cons: Must account for everything: scheduling, register allocation, etc…

• Difficult to write, difficult to debug, difficult to modify

Code Size Considerations

• Can trade binary size for more specialization
• Multiple implementations selected at runtime, even with same extensions
• e.g., Intrinsics + Function Multi-Versioning for micro-architecture tuning

• Some deployments sensitive to binary size, no universal solution
• Desktop application on DVD may be fine
• Mobile applications highly sensitive to download time
• Middleware vendors differentiate on binary size
• Server can and often rebuild everything bespoke for hardware

• Reasonable, domain-specific tradeoffs should be made

Conclusions
• Most software “ready” in that it will build and run on Linux

• Good performance is domain specific, need to test on target HW

• Toolchain support is good and RISC-V parity steadily improving

• Many software workloads will run fine as-is and unmodified

• Top priority for RISC-V enablement is more optimizations, e.g., for
V (vector), Zb{a,b,c,s} (bit manip) and Zvk (vector crypto)

• You can start today!

Getting Started Guide

Ways to Develop for RISC-V

• FPGA
• Pros: Cycle accurate model of hardware
• Cons: Whole system booting very slow, 10’s of MHz

• Emulation
• Pros: First to get RVI extensions, flexible and configurable
• Cons: Essentially impossible to measure performance

• Hardware
• Pros: Performance will match what ships exactly,
• Cons: Long lead time, may overfit microarchitecture, limited vector length

RISC-V Summit EU 2024
• Presented single slide on manually prebuilt developer images

• Since then work has focused on build automation

Gentoo Developer Images
• Project Goal

• Fastest way to create bootable images with up-to-date toolchains!

• Key Idea: Automate developer image building
• Now takes only ~300 minutes (!) to cross compile bootable image
• U-Boot + Kernel + ~330 software packages
• Bespoke CFLAGS possible, testing surfaced several gcc autovector issues [1]

• Partnered with Luca Barbato, RISC-V Gentoo developer
• Fixed multiple issues unblocking full cross compilation <-- no other distro has this
• Right now BPI-F3 and potentially other boards based on SpacemiT K1
• Joint blog post in-progress to post on RISE website

[1] GCC Bug 116242 - [meta-bug] Tracker for zvl issues in RISC-V

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116242

Installing the Image [1] (from Aug-15)
$ dd if=gentoo-linux-k1_dev-sdcard-2.0rc3.img of=/dev/sdc conv=sync status=progress

[1] https://dev.gentoo.org/~lu_zero/gentoo-linux-k1_dev-sdcard-2.0rc3.img.xz

https://dev.gentoo.org/~lu_zero/riscv/gentoo-linux-k1_dev-sdcard-2.0rc7.img.xz

Boot Process

Boot Process (Con’t)

Full Gentoo Linux System

Up-to-date Toolchains!
2024 Jun 20

2024 Aug 1

2024 Jul 22

Wifi and ethernet just work out of the box

Emerge (install) new packages

Demo in
RISE Lounge

Future Work

• Experiment with alternate whole system build configs
• Crossdev already supports riscv64-unknown-linux-musl as target
• Paves the way to build the whole system using clang

• Build everything with -O3 -march=rv64gcv_zvl256b
• Blocked on gcc bugs, but may work with clang

• Improve the overall cross-building experience
• This project already found many bugs

• Few packages (e.g. perl) already got some fixes
• Crossdev has a pending patch to make it profile-aware

Latest: https://dev.gentoo.org/~lu_zero/riscv/gentoo-linux-k1_dev-sdcard-2.0rc7.img.xz

https://dev.gentoo.org/~lu_zero/riscv/gentoo-linux-k1_dev-sdcard-2.0rc7.img.xz

 Example RVV 1.0 Code #1 - Get vector length
.global _start

_start:
 csrr a0, vlenb
 addi a7, x0, 93
 ecall

 Example RVV 1.0 Code #2 - Run-time detect
#include <sys/auxv.h>
#include <stdio.h>

#define ISA_V_HWCAP (1 << ('v' - 'a'))

void main() {
 unsigned long hw_cap = getauxval(AT_HWCAP);
 printf("RVV %s\n", hw_cap & ISA_V_HWCAP ? "detected" : "not found");
}

Example RVV 1.0 #3 - Application Profiling
$ perf record -e u_mode_cycle ./dav1d -i Bosphorus_1080p_8bit.ivf -o /dev/null
dav1d 1.5.0-3-g55fb943 - by VideoLAN
Decoded 600/600 frames (100.0%) - 10.04/30.00 fps (0.33x)
[perf record: Woken up 84 times to write data]
[perf record: Captured and wrote 22.223 MB perf.data (582464 samples)]
$ perf report

Questions?

