
RISC-V Developer Images
Bay Area RISC-V Group
2024-Aug-15

Nathan Egge <negge@google.com>
Luca Barbato <lu_zero@gentoo.org>

1

mailto:negge@google.com
mailto:lu_zero@gentoo.org


RISC-V Summit EU - June 2024
● Presented single slide on manually prebuilt developer images
● Since then work has focused on build automation

2



Project Goals

● Fastest way to create bootable images with up-to-date toolchains!

● RISC-V toolchains under active development and move very quickly
○ Bugs are found and fixed continuously, point releases matter!

● Primarily driven by need for tools to enable RVV 1.0 optimizations
○ Finally have widely available hardware e.g. K230, BPI-F3, ROMA II
○ As per Gentoo tradition, would like to build *all* packages with full 

support for available hardware: auto-vectorizer, bitmanip, crypto, etc.
○ Added benefit of assessing compiler readiness, and report gaps [1]

[1] GCC Bug 116242 - [meta-bug] Tracker for zvl issues in RISC-V
3

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116242


● Traditionally Gentoo builds new images through Catalyst
○ Images built through stages: stage1 -> stage2 -> stage3
○ Every stage is built either on native host or via qemu-user

■ Emulation via qemu-user adds large amount of overhead

● crossdev-stages [1] is an experiment on cross compiling
○ It leverages crossdev to avoid relying on qemu-user for RISC-V
○ Much, much faster (6x to 10x) and can be made even faster

■ First attempt building a full stage3 (300+ packages) took ~343m
■ Building stage3 + clang + additional tools now takes ~305m

[1] https://github.com/lu-zero/crossdev-stages 

Build scripts

4

https://wiki.gentoo.org/wiki/Catalyst
https://wiki.gentoo.org/wiki/Crossdev
https://github.com/lu-zero/crossdev-stages


$ lsblk

Preparing the Disk

5



$ dd if=gentoo-linux-k1_dev-sdcard-2.0rc3.img of=/dev/sdc conv=sync status=progress

[1] https://dev.gentoo.org/~lu_zero/gentoo-linux-k1_dev-sdcard-2.0rc3.img.xz 

Installing the image [1]

6

https://dev.gentoo.org/~lu_zero/gentoo-linux-k1_dev-sdcard-2.0rc3.img.xz


$ watch -d grep -e Dirty: -e Writeback: /proc/meminfo

Check the dirty page cache

7



$ dd if=gentoo-linux-k1_dev-sdcard-2.0rc3.img of=/dev/sdc conv=sync status=progress

Looks like it is done …

8



$ watch -d grep -e Dirty: -e Writeback: /proc/meminfo

… but now you can unplug

9



$ lsblk -o NAME,SIZE,TYPE,FSTYPE,FSVER,LABEL /dev/sdc

Check that image was written

10



$ lsblk -o NAME,SIZE,TYPE,FSTYPE,FSVER,LABEL /dev/sdc

Check that image was written

11

Will resize the rootfs later



Boot process

12



Boot process (con’t)

13



Full Gentoo Linux System \o/

14



Up-to-date Toolchains!

15

2024 Jun 20

2024 Aug 1

2024 Jul 22



Wifi and ethernet just work out of the box

16



Emerge packages

17



Resize the partition

18



Demo

19



● Experiment with alternate whole system build configs
○ Crossdev already supports riscv64-unknown-linux-musl as target
○ Paves the way to build the whole system using clang

● Build everything with -O3 -march=rv64gcv_zvl256b
○ Blocked on gcc bugs, but may work with clang

● Improve the overall cross-building experience
○ This project already found many bugs

■ Few packages (e.g. perl) already got some fixes
■ Crossdev has a pending patch to make it profile-aware

○ Possible to reduce the overall build time further
■ Using specific portage features already improved the overall build time by around 10%
■ Some packages do not take advantage of all available cores

● Portage can build different packages in parallel as long they are independent

Future Work

20



Questions?

21


